We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we propose a new urn model. A single urn contains b black balls and w white balls. For each observation, we randomly draw m balls and note their colors, say k black balls and m − k white balls. We return the drawn balls to the urn with an additional ck black balls and c(m − k) white balls. We repeat this procedure n times and denote by Xn the fraction of black balls after the nth draw. To investigate the asymptotic properties of Xn, we first perform some computational studies. We then show that {Xn} forms a martingale, which converges almost surely to a random variable X. The distribution of X is then shown to be absolutely continuous.
We derive a tight perturbation bound for hidden Markov models. Using this bound, we show that, in many cases, the distribution of a hidden Markov model is considerably more sensitive to perturbations in the emission probabilities than to perturbations in the transition probability matrix and the initial distribution of the underlying Markov chain. Our approach can also be used to assess the sensitivity of other stochastic models, such as mixture processes and semi-Markov processes.
We provide sufficient conditions for the following types of random variable to have the increasing-failure-rate (IFR) property: sums of a random number of random variables; the time at which a Markov chain crosses a random threshold; the time until a random number of events have occurred in an inhomogeneous Poisson process; and the number of events of a renewal process, and of a general counting process, that have occurred by a randomly distributed time.
We provide a scaling for compound Poisson distributions that leads (under certain conditions on the Fourier transform) to a weak convergence result as the parameter of the distribution tends to infinity. We show that the limiting probability measure belongs to the class of stable Cauchy laws with Fourier transform t ↦ exp(−c|t|− iat log|t|). We apply this convergence result to the standard discrete Luria–Delbrück distribution and derive an integral representation for the corresponding limiting density, as an alternative to that found in a closely related paper of Kepler and Oprea. Moreover, we verify local convergence and we derive an integral representation for the distribution function of the limiting continuous Luria–Delbrück distribution.
In this article, we consider the limit behavior of the hazard rate function of mixture distributions, assuming knowledge of the behavior of each individual distribution. We show that the asymptotic baseline function of the hazard rate function is preserved under mixture.
In this paper, we introduce the minimum dynamic discrimination information (MDDI) approach to probability modeling. The MDDI model relative to a given distribution G is that which has least Kullback-Leibler information discrepancy relative to G, among all distributions satisfying some information constraints given in terms of residual moment inequalities, residual moment growth inequalities, or hazard rate growth inequalities. Our results lead to MDDI characterizations of many well-known lifetime models and to the development of some new models. Dynamic information constraints that characterize these models are tabulated. A result for characterizing distributions based on dynamic Rényi information divergence is also given.
A random variable Y is branching stable (B-stable) for a nonnegative integer-valued random variable J with E(J)>1 if Y*J∿cY for some scalar c, where Y*J is the sum of J independent copies of Y. We explore some aspects of this notion of stability and show that, for any Y0 with finite nonzero mean, if we define Yn+1=Yn*J/E(J) then the sequence Yn converges in law to a random variable Y∞ that is B-stable for J. Also Y∞ is the unique B-stable law with mean E(Y0). We also present results relating to random variables Y0 with zero means and infinite means. The notion of B-stability arose in a scheme for cataloguing a large network of computers.
Random vectors in the positive orthant whose distributions possess hidden regular variation are a subclass of those whose distributions are multivariate regularly varying with asymptotic independence. The concept is an elaboration of the coefficient of tail dependence of Ledford and Tawn. We show that the rank transform that brings unequal marginals to the standard case also preserves the hidden regular variation. We discuss applications of the results to two examples, one involving flood risk and the other Internet data.
We consider a service system (QS) that operates according to the first-come-first-served (FCFS) discipline, and in which the service rate is an increasing function of the queue length. Customers arrive sequentially at the system, and decide whether or not to join using decision rules based upon the queue length on arrival. Each customer is interested in selecting a rule that meets a certain optimality criterion with regard to their expected sojourn time in the system; as a consequence, the decision rules of other customers must be taken into account. Within a particular class of decision rules for an associated infinite-player game, the structure of the Nash equilibrium routeing policies is characterized. We prove that, within this class, there exist a finite number of Nash equilibria, and that at least one of these is nonrandomized. Finally, with the aid of simulation experiments, we explore the extent to which the Nash equilibria are characteristic of customer joining behaviour under a learning rule based on system-wide data.
Stochastic processes with Student marginals and various types of dependence structure, allowing for both short- and long-range dependence, are discussed in this paper. A particular motivation is the modelling of risky asset time series.
As proposed by Irle and Gani in 2001, a process X is said to be slower in level crossing than a process Y if it takes X stochastically longer to exceed any given level than it does Y. In this paper, we extend a result of Irle (2003), relative to the level crossing ordering of uniformizable skip-free-to-the-right continuous-time Markov chains, to derive a new set of sufficient conditions for the level crossing ordering of these processes. We apply our findings to birth-death processes with and without catastrophes, and M/M/s/c systems.
In this paper we consider some dependence properties and orders among multivariate distributions, and we study their preservation under mixtures. Applications of these results in reliability, risk theory, and mixtures of discrete distributions are provided.
In bioinformatics, the notion of an ‘island’ enhances the efficient simulation of gapped local alignment statistics. This paper generalizes several results relevant to gapless local alignment statistics from one to higher dimensions, with a particular eye to applications in gapped alignment statistics. For example, reversal of paths (rather than of discrete time) generalizes a distributional equality, from queueing theory, between the Lindley (local sum) and maximum processes. Systematic investigation of an ‘ownership’ relationship among vertices in ℤ2 formalizes the notion of an island as a set of vertices having a common owner. Predictably, islands possess some stochastic ordering and spatial averaging properties. Moreover, however, the average number of vertices in a subcritical stationary island is 1, generalizing a theorem of Kac about stationary point processes. The generalization leads to alternative ways of simulating some island statistics.
Let {Xn, n = 0, 1,…} be the sequence of the lower records for an arbitrary underlying distribution μ on [0, ∞). We show that is equal in distribution to where {τi, i = 1, 2,…} is a Poisson flow of unit intensity and g is a right-continuous and nonincreasing function defined by μ. This observation allows us to extend results of Bose et al. and simplify their proofs.
We study a family of locally self-similar stochastic processes Y = {Y(t)}t∈ℝ with α-stable distributions, called linear multifractional stable motions. They have infinite variance and may possess skewed distributions. The linear multifractional stable motion processes include, in particular, the classical linear fractional stable motion processes, which have stationary increments and are self-similar with self-similarity parameter H. The linear multifractional stable motion process Y is obtained by replacing the self-similarity parameter H in the integral representation of the linear fractional stable motion process by a deterministic function H(t). Whereas the linear fractional stable motion is always continuous in probability, this is not in general the case for Y. We obtain necessary and sufficient conditions for the continuity in probability of the process Y. We also examine the effect of the regularity of the function H(t) on the local structure of the process. We show that under certain Hölder regularity conditions on the function H(t), the process Y is locally equivalent to a linear fractional stable motion process, in the sense of finite-dimensional distributions. We study Y by using a related α-stable random field and its partial derivatives.
One approach to the computation of the price of an Asian option involves the Hartman–Watson distribution. However, numerical problems for its density occur for small values. This motivates the asymptotic study of its distribution function.
Consider a sequence of independent Bernoulli trials with success probability p. Let N(n; k1, k2) denote the number of times that k1 failures are followed by k2 successes among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total variation upper bound for the rate of convergence of N(n; k1, k2) to a suitable Poisson random variable. As a special case, the corresponding limit theorem is established. Similar results are obtained for Nk3(n; k1, k2), the number of times that k1 failures followed by k2 successes occur k3 times successively in n Bernoulli trials. The bounds obtained are generally sharper than, and improve upon, some of the already known results. Finally, the technique is adapted to obtain Poisson approximation results for the occurrences of the above-mentioned events under Markov-dependent trials.
A method is provided for numerical evaluation, with any given accuracy, of the probability that at least p% of the genetic material from an individual's chromosomal segment survives to the next generation. Relevant MAPLE® V codes, for automated implementation of such evaluation, are also provided. The genomic continuum model, with Haldane's model for the crossover process, is assumed.
In this paper we extend some recent results on the comparison of multivariate risk vectors with respect to supermodular and related orderings. We introduce a dependence notion called the ‘weakly conditional increasing in sequence order’ that allows us to conclude that ‘more dependent’ vectors in this ordering are also comparable with respect to the supermodular ordering. At the same time, this ordering allows us to compare two risks with respect to the directionally convex order if the marginals increase convexly. We further state comparison criteria with respect to the directionally convex order for some classes of risk vectors which are modelled by functional influence factors. Finally, we discuss Fréchet bounds with respect to Δ-monotone functions when multivariate marginals are given. It turns out that, in the case of multivariate marginals, comonotone vectors no longer yield necessarily the largest risks but, in some cases, may even be vectors which minimize risk.
A formal approach to produce a model for the data-generating distribution based on partial knowledge is the well-known maximum entropy method. In this approach, partial knowledge about the data-generating distribution is formulated in terms of some information constraints and the model is obtained by maximizing the Shannon entropy under these constraints. Frequently, in reliability analysis the problem of interest is the lifetime beyond an age t. In such cases, the distribution of interest for computing uncertainty and information is the residual distribution. The information functions involving a residual life distribution depend on t, and hence are dynamic. The maximum dynamic entropy (MDE) model is the distribution with the density that maximizes the dynamic entropy for all t. We provide a result that relates the orderings of dynamic entropy and the hazard function for distributions with monotone densities. Applications include dynamic entropy ordering within some parametric families of distributions, orderings of distributions of lifetimes of systems and their components connected in series and parallel, record values, and formulation of constraints for the MDE model in terms of the evolution paths of the hazard function and mean residual lifetime function. In particular, we identify classes of distributions in which some well-known distributions, including the mixture of two exponential distributions and the mixture of two Pareto distributions, are the MDE models.