We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Markov and semi-Markov processes with block tridiagonal transition matrices for their embedded discrete-time Markov chains are underlying stochastic models in many applied probability problems. In particular, identity-by-descent (IBD) problems for uncle-type and cousin-type relationships fall into this class. More specifically, the exact distributions of relevant IBD statistics for two individuals in either an uncle-type or cousin-type relationship are of interest. Such statistics are the amount of genome shared IBD by the two related individuals on a chromosomal segment and the number of IBD pieces on such a segment. These lead to special reward distributions associated with block tridiagonal transition matrices for continuous-time Markov chains. A method is provided for calculating explicit, closed-form expressions for Laplace transforms of general reward functions for such Markov chains. Some calculation results on the cumulative probabilities of relevant IBD statistics via a numerical inversion of the Laplace transforms are also provided for uncle/nephew and first-cousin relationships.
A parallel system with heterogeneous exponential component lifetimes is shown to be more skewed (according to the convex transform order) than the system with independent and identically distributed exponential components. As a consequence, equivalent conditions for comparing the variabilities of the largest order statistics from heterogeneous and homogeneous exponential samples in the sense of the dispersive order and the right-spread order are established. A sufficient condition is also given for the proportional hazard rate model.
Given a pure-jump subordinator (i.e. nondecreasing Lévy process with no drift) with continuous Lévy measure ν, we derive a formula for the distribution function Fs (x; t) at time t of the associated subordinator whose Lévy measure is the restriction of ν to (0,s]. It will be expressed in terms of ν and the marginal distribution function F (⋅; t) of the original process. A generalization concerning an arbitrary truncation of ν will follow. Under certain conditions, an analogous formula will be obtained for the nth derivative, ∂nFs (x; t) ∂ xn. The requirement that ν is continuous is shown to have no intrinsic meaning. A number of interesting results involving the size ordered jumps of subordinators will be derived. An appropriate approximation for the small jumps of a gamma process will be considered, leading to a revisiting of the generalized Dickman distribution.
Let Xn(Λ) be the number of nonoverlapping occurrences of a simple pattern Λ in a sequence of independent and identically distributed (i.i.d.) multistate trials. For fixed k, the exact tail probability P{Xn (∧) < k} is difficult to compute and tends to 0 exponentially as n → ∞. In this paper we use the finite Markov chain imbedding technique and standard matrix theory results to obtain an approximation for this tail probability. The result is extended to compound patterns, Markov-dependent multistate trials, and overlapping occurrences of Λ. Numerical comparisons with Poisson and normal approximations are provided. Results indicate that the proposed approximations perform very well and do significantly better than the Poisson and normal approximations in many cases.
This paper is concerned with a nonstationary Markovian chain of cascading damage that constitutes an iterated version of a classical damage model. The main problem under study is to determine the exact distribution of the total outcome of this process when the cascade of damages finally stops. Two different applications are discussed, namely the final size for a wide class of SIR (susceptible → infective → removed) epidemic models and the total number of failures for a system of components in reliability. The starting point of our analysis is the recent work of Lefèvre (2007) on a first-crossing problem for the cumulated partial sums of independent parametric distributions, possibly nonstationary but stable by convolution. A key mathematical tool is provided by a nonstandard family of remarkable polynomials, called the generalised Abel–Gontcharoff polynomials. Somewhat surprisingly, the approach followed will allow us to relax some model assumptions usually made in epidemic theory and reliability. To close, approximation by a branching process is also investigated to a certain extent.
We study the convolution of compound negative binomial distributions with arbitrary parameters. The exact expression and also a random parameter representation are obtained. These results generalize some recent results in the literature. An application of these results to insurance mathematics is discussed. The sums of certain dependent compound Poisson variables are also studied. Using the connection between negative binomial and gamma distributions, we obtain a simple random parameter representation for the convolution of independent and weighted gamma variables with arbitrary parameters. Applications to the reliability of m-out-of-n:G systems and to the shortest path problem in graph theory are also discussed.
Let X1, X2,… and Y1, Y2,… be two sequences of absolutely continuous, independent and identically distributed (i.i.d.) random variables with equal means E(Xi)=E(Yi), i=1,2,… In this work we provide upper bounds for the total variation and Kolmogorov distances between the distributions of the partial sums ∑i=1nXi and ∑i=1nYi. In the case where the distributions of the Xis and the Yis are compared with respect to the convex order, the proposed upper bounds are further refined. Finally, in order to illustrate the applicability of the results presented, we consider specific examples concerning gamma and normal approximations.
We consider the problem of allocating k active spares to n components of a series system in order to optimize its lifetime. Under the hypotheses that lifetimes of n components are identically distributed with distribution function F(⋅), lifetimes of k spares are identically distributed with distribution function G(⋅), lifetimes of components and spares are independently distributed, and that ln(G(x))/ln(F(x)) is increasing in x, we show that the strategy of balanced allocation of spares optimizes the failure rate function of the system. Furthermore, under the hypotheses that lifetimes of n components are stochastically ordered, lifetimes of k spares are identically distributed, and that lifetimes of components and spares are independently distributed, we show that the strategy of balanced allocation of spares is superior to the strategy of allocating a larger number of components to stronger components. For coherent systems consisting of n identical components with n identical redundant (spare) components, we compare strategies of component and system redundancies under the criteria of reversed failure rate and likelihood ratio orderings. When spares and original components do not necessarily match in their life distributions, we provide a sufficient condition, on the structure of the coherent system, for the strategy of component redundancy to be superior to the strategy of system redundancy under reversed failure rate ordering. As a consequence, we show that, for r-out-of-n systems, the strategy of component redundancy is superior to the strategy of system redundancy under the criterion of reversed failure rate ordering. When spares and original components match in their life distributions, we provide a necessary and sufficient condition, on the structure of the coherent system, for the strategy of component redundancy to be superior to the strategy of system redundancy under the likelihood ratio ordering. As a consequence, we show that, for r-out-of-n systems, with spares and original components matching in their life distributions, the strategy of component redundancy is superior to the strategy of system redundancy under the likelihood ratio ordering.
We investigate stochastic comparisons between exponential family distributions and their mixtures with respect to the usual stochastic order, the hazard rate order, the reversed hazard rate order, and the likelihood ratio order. A general theorem based on the notion of relative log-concavity is shown to unify various specific results for the Poisson, binomial, negative binomial, and gamma distributions in recent literature. By expressing a convolution of gamma distributions with arbitrary scale and shape parameters as a scale mixture of gamma distributions, we obtain comparison theorems concerning such convolutions that generalize some known results. Analogous results on convolutions of negative binomial distributions are also discussed.
In this paper, a new approach is proposed to investigate Blackwell-type renewal theorems for weighted renewal functions systematically according to which of the tails of weighted renewal constants or the underlying distribution is asymptotically heavier. Some classical results are improved considerably.
The upper tail behaviour is explored for a stopped random product ∏j=1NXj, where the factors are positive and independent and identically distributed, and N is the first time one of the factors occupies a subset of the positive reals. This structure is motivated by a heavy-tailed analogue of the factorial n!, called the factoid of n. Properties of the factoid suggested by computer explorations are shown to be valid. Two topics about the determination of the Zipf exponent in the rank-size law for city sizes are discussed.
The representation of the reliability function of the lifetime of a coherent system as a mixture of the reliability function of order statistics associated with the lifetimes of its components is a very useful tool to study the ordering and the limiting behaviour of coherent systems. In this paper, we obtain several representations of the reliability functions of residual lifetimes of used coherent systems under two particular conditions on the status of the components or the system in terms of the reliability functions of residual lifetimes of order statistics.
We present a method to obtain both exact values and sharp estimates for the total variation distance between binomial and Poisson distributions with the same mean λ. We give a simple efficient algorithm, whose complexity order is to compute exact values. Such an algorithm can be further simplified for moderate sample sizes n, provided that λ is neither close to from the left nor close to from the right. Sharp estimates, better than other known estimates in the literature, are also provided. The 0s of the second Krawtchouk and Charlier polynomials play a fundamental role.
In this paper we study the properties of total time on test transforms of order n and examine their applications in reliability analysis. It is shown that the successive transforms produce either distributions with increasing or bathtub-shaped failure rates or distributions with decreasing or upside bathtub-shaped failure rates. The ageing properties of the baseline distribution is compared with those of transformed distributions, and a partial order based on nth-order transforms and their implications are discussed.
By considering k-out-of-n systems with independent and nonidentically distributed components, we discuss stochastic monotone properties of the residual life and the inactivity time. We then present some stochastic comparisons of two systems based on the residual life and inactivity time.
We study a particular example of a recursive distributional equation (RDE) on the unit interval. We identify all invariant distributions, the corresponding ‘basins of attraction’, and address the issue of endogeny for the associated tree-indexed problem, making use of an extension of a recent result of Warren.
The distributions of the run occurrences for a sequence of independent and identically distributed (i.i.d.) experiments are usually obtained by combinatorial methods (see Balakrishnan and Koutras (2002, Chapter 5)) and the resulting formulae are often very tedious, while the distributions for non i.i.d. experiments are generally intractable. It is therefore of practical interest to find a suitable approximate model with reasonable approximation accuracy. In this paper we demonstrate that the negative binomial distribution is the most suitable approximate model for the number of k-runs: it outperforms the Poisson approximation, the general compound Poisson approximation as observed in Eichelsbacher and Roos (1999), and the translated Poisson approximation in Rollin (2005). In particular, its accuracy of approximation in terms of the total variation distance improves when the number of experiments increases, in the same way as the normal approximation improves in the Berry-Esseen theorem.
For an order statistic (X1:n,…,Xn:n) of a collection of independent but not necessarily identically distributed random variables, and any i ∈ {1,…,n}, the conditional distribution of (Xi+1:n,…,Xn:n) given Xi:n > s is shown to be stochastically increasing in s. This answers a question by Hu and Xie (2006).
A comparison theorem is stated for Markov processes in Polish state spaces. We consider a general class of stochastic orderings induced by a cone of real functions. The main result states that stochastic monotonicity of one process and comparability of the infinitesimal generators imply ordering of the processes. Several applications to convex type and to dependence orderings are given. In particular, Liggett's theorem on the association of Markov processes is a consequence of this comparison result.