To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
System signatures are useful tools in the study and comparison of coherent systems. In this paper, we define and study a similar concept, called the joint signature, for two coherent systems which share some components. Under an independent and identically distributed assumption on component lifetimes, a pseudo-mixture representation based on this joint signature is obtained for the joint distribution of the lifetimes of both systems. Sufficient conditions are given based on the respective joint signatures of two pairs of systems, each with shared components, to ensure various forms of bivariate stochastic orderings between the joint lifetimes of the two pairs of systems.
Measures of divergence or discrepancy are used either to measure mutual information concerning two variables or to construct model selection criteria. In this paper we focus on divergence measures that are based on a class of measures known as Csiszár's divergence measures. In particular, we propose a measure of divergence between residual lives of two items that have both survived up to some time t as well as a measure of divergence between past lives, both based on Csiszár's class of measures. Furthermore, we derive properties of these measures and provide examples based on the Cox model and frailty or transformation model.
In this note we deal with the allocation of independent and identical active redundancies to a k-out-of-n system with the usual stochastic order among its independent components. The optimal policy is proved both to assign more redundancies to the weaker component and to majorize all other policies. This improves the corresponding one in Hu and Wang (2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as well.
We apply Stein's method for probabilistic approximation by a compound geometric distribution, with applications to Markov chain hitting times and sequence patterns. Bounds on our Stein operator are found using a complex analytical approach based on generating functions and Cauchy's formula.
The inverse stochastic dominance of degree r is a stochastic order of interest in several branches of economics. We discuss it in depth, the central point being the characterization in terms of the weak r-majorization of the vectors of expected order statistics. The weak r-majorization (a notion introduced in the paper) is a natural extension of the classical (reverse) weak majorization of Hardy, Littlewood and Pòlya. This work also shows the equivalence between the continuous majorization (of higher order) and the discrete r-majorization. In particular, our results make it clear that the cases r = 1, 2 differ substantially from those with r ≥ 3, a fact observed earlier by Muliere and Scarsini (1989), among other authors. Motivated by this fact, we introduce new stochastic orderings, as well as new social inequality indices to compare the distribution of the wealth in two populations, which could be considered as natural extensions of the first two dominance rules and the S-Gini indices, respectively.
We approximate the distribution of the sum of independent but not necessarily identically distributed Bernoulli random variables using a shifted binomial distribution, where the three parameters (the number of trials, the probability of success, and the shift amount) are chosen to match the first three moments of the two distributions. We give a bound on the approximation error in terms of the total variation metric using Stein's method. A numerical study is discussed that shows shifted binomial approximations are typically more accurate than Poisson or standard binomial approximations. The application of the approximation to solving a problem arising in Bayesian hierarchical modeling is also discussed.
A necessary condition for a rational Laplace–Stieltjes transform to correspond to a matrix exponential distribution is that the pole of maximal real part is real and negative. Given a rational Laplace–Stieltjes transform with such a pole, we present a method to determine whether or not the numerator polynomial admits a transform that corresponds to a matrix exponential distribution. The method relies on the minimization of a continuous function of one variable over the nonnegative real numbers. Using this approach, we give an alternative characterization for all matrix exponential distributions of order three.
A model for describing the lifetimes of coherent systems, where the failures of components may have an impact on the lifetimes of the remaining components, is proposed. The model is motivated by the definition of sequential order statistics (cf. Kamps (1995)). Sequential order statistics describe the successive failure times in a sequential k-out-of-n system, where the distribution of the remaining components' lifetimes is allowed to change after every failure of a component. In the present paper, general component lifetimes which can be influenced by failures are considered. The ordered failure times of these components can be used to extend the concept of sequential order statistics. In particular, a definition of sequential order statistics based on exchangeable components is proposed. By utilizing the system signature (cf. Samaniego (2007)), the distribution of the lifetime of a coherent system with failure-dependent exchangeable component lifetimes is shown to be given by a mixture of the distributions of sequential order statistics. Furthermore, some results on the joint distribution of sequential order statistics based on exchangeable components are given.
We consider coherent and mixed reliability systems composed of elements with independent and identically distributed lifetimes. We present upper bounds on variances of system lifetimes, expressed in terms of variances of single components. We also discuss attainability conditions and some special cases and examples.
Directionally convex ordering is a useful tool for comparing the dependence structure of random vectors, which also takes into account the variability of the marginal distributions. It can be extended to random fields by comparing all finite-dimensional distributions. Viewing locally finite measures as nonnegative fields of measure values indexed by the bounded Borel subsets of the space, in this paper we formulate and study directionally convex ordering of random measures on locally compact spaces. We show that the directionally convex order is preserved under some of the natural operations considered on random measures and point processes, such as deterministic displacement of points, independent superposition, and thinning, as well as independent, identically distributed marking. Further operations on Cox point processes such as position-dependent marking and displacement of points are shown to preserve the order. We also examine the impact of the directionally convex order on the second moment properties, in particular on clustering and on Palm distributions. Comparisons of Ripley's functions and pair correlation functions, as well as examples, seem to indicate that point processes higher in the directionally convex order cluster more. In our main result we show that nonnegative integral shot noise fields with respect to the directionally convex ordered random measures inherit this ordering from the measures. Numerous applications of this result are shown, in particular to comparison of various Cox processes and some performance measures of wireless networks, in both of which shot noise fields appear as key ingredients. We also mention a few pertinent open questions.
We study the class of logarithmic skew-normal (LSN) distributions. They have heavy tails; however, all their moments of positive integer orders are finite. We are interested in the problem of moments for such distributions. We show that the LSN distributions are all nonunique (moment-indeterminate). Moreover, we explicitly describe Stieltjes classes for some LSN distributions; they are families of infinitely many distributions, which are different but have the same moment sequence as a fixed LSN distribution.
Convolutions of long-tailed and subexponential distributions play a major role in the analysis of many stochastic systems. We study these convolutions, proving some important new results through a simple and coherent approach, and also showing that the standard properties of such convolutions follow as easy consequences.
We study the tail behavior of the distribution of the sum of asymptotically independent risks whose marginal distributions belong to the maximal domain of attraction of the Gumbel distribution. We impose conditions on the distribution of the risks (X, Y) such that P(X + Y > x) ∼ (constant) P(X > x). With the further assumption of nonnegativity of the risks, the result is extended to more than two risks. We note a sufficient condition for a distribution to belong to both the maximal domain of attraction of the Gumbel distribution and the subexponential class. We provide examples of distributions which satisfy our assumptions. The examples include cases where the marginal distributions of X and Y are subexponential and also cases where they are not. In addition, the asymptotic behavior of linear combinations of such risks with positive coefficients is explored, leading to an approximate solution of an optimization problem which is applied to portfolio design.
In this paper we prove that a sequence of scaled generalized Jiřina processes can converge weakly to a nonlinear diffusion process with Lévy jumps under certain conditions.
Markov and semi-Markov processes with block tridiagonal transition matrices for their embedded discrete-time Markov chains are underlying stochastic models in many applied probability problems. In particular, identity-by-descent (IBD) problems for uncle-type and cousin-type relationships fall into this class. More specifically, the exact distributions of relevant IBD statistics for two individuals in either an uncle-type or cousin-type relationship are of interest. Such statistics are the amount of genome shared IBD by the two related individuals on a chromosomal segment and the number of IBD pieces on such a segment. These lead to special reward distributions associated with block tridiagonal transition matrices for continuous-time Markov chains. A method is provided for calculating explicit, closed-form expressions for Laplace transforms of general reward functions for such Markov chains. Some calculation results on the cumulative probabilities of relevant IBD statistics via a numerical inversion of the Laplace transforms are also provided for uncle/nephew and first-cousin relationships.
A parallel system with heterogeneous exponential component lifetimes is shown to be more skewed (according to the convex transform order) than the system with independent and identically distributed exponential components. As a consequence, equivalent conditions for comparing the variabilities of the largest order statistics from heterogeneous and homogeneous exponential samples in the sense of the dispersive order and the right-spread order are established. A sufficient condition is also given for the proportional hazard rate model.
Given a pure-jump subordinator (i.e. nondecreasing Lévy process with no drift) with continuous Lévy measure ν, we derive a formula for the distribution function Fs (x; t) at time t of the associated subordinator whose Lévy measure is the restriction of ν to (0,s]. It will be expressed in terms of ν and the marginal distribution function F (⋅; t) of the original process. A generalization concerning an arbitrary truncation of ν will follow. Under certain conditions, an analogous formula will be obtained for the nth derivative, ∂nFs (x; t) ∂ xn. The requirement that ν is continuous is shown to have no intrinsic meaning. A number of interesting results involving the size ordered jumps of subordinators will be derived. An appropriate approximation for the small jumps of a gamma process will be considered, leading to a revisiting of the generalized Dickman distribution.
A simple technique for obtaining bounds in terms of means and variances for the expectations of certain functions of random variables in a given class is examined. The bounds given are sharp in the sense that they are attainable by at least one random variable in the class. This technique is applied to obtain bounds for moment generating functions, the coefficient of skewness and parameters associated with branching processes. In particular an improved lower bound for the Malthusian parameter in an age-dependent branching process is derived.
A churning transformation can be defined on probability measures by an infinite sequence of finite permutations of mass. Continuity and absolute continuity of measures are invariants for such transformations but it is shown that certain probability measures whose Fourier-Stieltjes transforms fail to vanish at infinity may be churned into measures whose transforms do vanish in this sense.
Let pα,θ be the Linnik density, that is, the probability density with the characteristic function . The following problem is studied: Let (α θ), (β, ϑ) be two point of PD. When is it possible to represent β,ϑ as a scale mixture of pαθ? A subset of the admissible pairs (α, θ), (β, ϑ) is described.