To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Under the assumption of independent and identically distributed (i.i.d.) components, the problem of the stochastic comparison of a coherent system having used components and a used coherent system has been considered. Necessary and sufficient conditions on structure functions have been provided for the stochastic comparison of a coherent system having used/inactive i.i.d. components and a used/inactive coherent system. As a consequence, for r-out-of-n systems, it has been shown that systems having used i.i.d. components stochastically dominate used systems in the likelihood ratio ordering.
Consider random vectors formed by a finite number of independent groups of independent and identically distributed random variables, where those of the last group are stochastically smaller than those of the other groups. Conditions are given such that certain functions, defined as suitable means of supermodular functions of the random variables of the vectors, are supermodular or increasing directionally convex. Comparisons based on the increasing convex order of supermodular functions of such random vectors are also investigated. Applications of the above results are then provided in risk theory, queueing theory, and reliability theory, with reference to (i) net stop-loss reinsurance premiums of portfolios from different groups of insureds, (ii) closed cyclic multiclass Gordon-Newell queueing networks, and (iii) reliability of series systems formed by units selected from different batches.
Sharp tail bounds for the sum of d random variables with given marginal distributions and arbitrary dependence structure have been known since Makarov (1981) and Rüschendorf (1982) for d=2 and, in some examples, for d≥3. Based on a duality result, dual bounds have been introduced in Embrechts and Puccetti (2006b). In the homogeneous case, F1=···=Fn, with monotone density, sharp tail bounds were recently found in Wang and Wang (2011). In this paper we establish the sharpness of the dual bounds in the homogeneous case under general conditions which include, in particular, the case of monotone densities and concave densities. We derive the corresponding optimal couplings and also give an effective method to calculate the sharp bounds.
In this note we compute the Laplace transform of hitting times, to fixed levels, of integrated geometric Brownian motion. The transform is expressed in terms of the gamma and confluent hypergeometric functions. Using a simple Itô transformation and standard results on hitting times of diffusion processes, the transform is characterized as the solution to a linear second-order ordinary differential equation which, modulo a change of variables, is equivalent to Kummer's equation.
We extend the class of tempered stable distributions, which were first introduced in Rosiński (2007). Our new class allows for more structure and more variety of the tail behaviors. We discuss various subclasses and the relations between them. To characterize the possible tails, we give detailed results about finiteness of various moments. We also give necessary and sufficient conditions for the tails to be regularly varying. This last part allows us to characterize the domain of attraction to which a particular tempered stable distribution belongs.
Tankov (2011) improved the Fréchet bounds for a bivariate copula when its values on a compact subset of [0, 1]2 are given. He showed that the best possible bounds are quasi-copulas and gave a sufficient condition for these bounds to be copulas. In this note we give weaker sufficient conditions to ensure that the bounds are copulas. We also show how this can be useful in portfolio selection. It turns out that finding a copula as a lower bound plays a key role in determining optimal investment strategies explicitly for investors with some type of state-dependent constraints.
Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variable X with its Lévy density explicitly specified, if its distribution conditional on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection sampling, without knowing the explicit expression of the density of X. We show that variations of the result can be used to sample various nonnegative i.d. random variables.
In this paper we consider three-dimensional random tessellations that are stable under iteration (STIT tessellations). STIT tessellations arise as a result of subsequent cell division, which implies that their cells are not face-to-face. The edges of the cell-dividing polygons are the so-called I-segments of the tessellation. The main result is an explicit formula for the distribution of the number of vertices in the relative interior of the typical I-segment. In preparation for its proof, we obtain other distributional identities for the typical I-segment and the length-weighted typical I-segment, which provide new insight into the spatiotemporal construction process.
Given a probability density, we estimate the rate of decay of the measure of the level sets of its evolutes by the Ornstein–Uhlenbeck semigroup. The rate is faster than what follows from the preservation of mass and Markov’s inequality.
Almost all populations existing in the real world are finite populations. Specifically, in the areas relevant to lifetime modeling and analysis, finite populations are frequently encountered. However, descriptions of failure/survival patterns of elements in the finite population have not yet been properly established. In particular, it is questionable whether the ordinary failure rate can be defined for finite populations in the same way and whether the corresponding interpretations are still valid. In this paper we consider two kinds of finite mixed population and provide new definitions for their failure rates. Then we clarify the notion of failure rate in finite populations.
We consider a multivariate distributional recursion of sum type, as arises in the probabilistic analysis of algorithms and random trees. We prove an upper tail bound for the solution using Chernoff's bounding technique by estimating the Laplace transform. The problem is traced back to the corresponding problem for binary search trees by stochastic domination. The result obtained is applied to the internal path length and Wiener index of random b-ary recursive trees with weighted edges and random linear recursive trees. Finally, lower tail bounds for the Wiener index of these trees are given.
We study a family of distributions that satisfy the stability-under-addition property, provided that the number ν of random variables in a sum is also a random variable. We call the corresponding property ν-stability and investigate the situation when the semigroup generated by the generating function of ν is commutative. Using results from the theory of iterations of analytic functions, we describe ν-stable distributions generated by summations with rational generating functions. A new case in this class of distributions arises when generating functions are linked with Chebyshev polynomials. The analogue of normal distribution corresponds to the hyperbolic secant distribution.
In the study of the reliability of technical systems in reliability engineering, coherent systems play a key role. In this paper we consider a coherent system consisting of n components with independent and identically distributed components and propose two time-dependent criteria. The first criterion is a measure of the residual lifetime of live components of a coherent system having some of the components alive when the system fails at time t. The second criterion is a time-dependent measure which enables us to investigate the inactivity times of the failed components of a coherent system still functioning though some of its components have failed. Several ageing and stochastic properties of the proposed measures are then established.
The concept of complete mixability is relevant to some problems of optimal couplings with important applications in quantitative risk management. In this paper we prove new properties of the set of completely mixable distributions, including a completeness and a decomposition theorem. We also show that distributions with a concave density and radially symmetric distributions are completely mixable.
The ‘coupon collection problem’ refers to a class of occupancy problems in which j identical items are distributed, independently and at random, to n cells, with no restrictions on multiple occupancy. Identifying the cells as coupons, a coupon is ‘collected’ if the cell is occupied by one or more of the distributed items; thus, some coupons may never be collected, whereas others may be collected once or twice or more. We call the number of coupons collected exactly r times coupons of type r. The coupon collection model we consider is general, in that a random number of purchases occurs at each stage of collecting a large number of coupons; the sample sizes at each stage are independent and identically distributed according to a sampling distribution. The joint behavior of the various types is an intricate problem. In fact, there is a variety of joint central limit theorems (and other limit laws) that arise according to the interrelation between the mean, variance, and range of the sampling distribution, and of course the phase (how far we are in the collection processes). According to an appropriate combination of the mean of the sampling distribution and the number of available coupons, the phase is sublinear, linear, or superlinear. In the sublinear phase, the normalization that produces a Gaussian limit law for uncollected coupons can be used to obtain a multivariate central limit law for at most two other types — depending on the rates of growth of the mean and variance of the sampling distribution, we may have a joint central limit theorem between types 0 and 1, or between types 0, 1, and 2. In the linear phase we have a multivariate central limit theorem among the types 0, 1,…, k for any fixed k.
Hazard rates play an important role in various areas, e.g. reliability theory, survival analysis, biostatistics, queueing theory, and actuarial studies. Mixtures of distributions are also of great preeminence in such areas as most populations of components are indeed heterogeneous. In this study we present a sufficient condition for mixtures of two elements of the same natural exponential family (NEF) to have an increasing hazard rate. We then apply this condition to some classical NEFs having either quadratic or cubic variance functions (VFs) and others as well. Particular attention is paid to the hyperbolic cosine NEF having a quadratic VF, the Ressel NEF having a cubic VF, and the NEF generated by Kummer distributions of type 2. The application of such a sufficient condition is quite intricate and cumbersome, in particular when applied to the latter three NEFs. Various lemmas and propositions are needed to verify this condition for such NEFs. It should be pointed out, however, that our results are mainly applied to a mixture of two populations.
We consider regular variation of a Lévy process X := (Xt)t≥0 in with Lévy measure Π, emphasizing the dependence between jumps of its components. By transforming the one-dimensional marginal Lévy measures to those of a standard 1-stable Lévy process, we decouple the marginal Lévy measures from the dependence structure. The dependence between the jumps is modeled by a so-called Pareto Lévy measure, which is a natural standardization in the context of regular variation. We characterize multivariate regularly variation of X by its one-dimensional marginal Lévy measures and the Pareto Lévy measure. Moreover, we define upper and lower tail dependence coefficients for the Lévy measure, which also apply to the multivariate distributions of the process. Finally, we present graphical tools to visualize the dependence structure in terms of the spectral density and the tail integral for homogeneous and nonhomogeneous Pareto Lévy measures.
The distributions for continuous, discrete, and conditional discrete scan statistics are studied. The approach of finite Markov chain imbedding, which has been applied to random permutations as well as to runs and patterns, is extended to compute the distribution of the conditional discrete scan statistic, defined from a sequence of Bernoulli trials. It is shown that the distribution of the continuous scan statistic induced by a Poisson process defined on (0, 1] is a limiting distribution of weighted distributions of conditional discrete scan statistics. Comparisons of rates of convergence as well as numerical comparisons of various bounds and approximations are provided to illustrate the theoretical results.
We use a change-of-variable formula in the framework of functions of bounded variation to derive an explicit formula for the Fourier transform of the level crossing function of shot noise processes with jumps. We illustrate the result in some examples and give some applications. In particular, it allows us to study the asymptotic behavior of the mean number of level crossings as the intensity of the Poisson point process of the shot noise process goes to infinity.
We give an efficient method based on minimal deterministic finite automata for computing the exact distribution of the number of occurrences and coverage of clumps (maximal sets of overlapping words) of a collection of words. In addition, we compute probabilities for the number of h-clumps, word groupings where gaps of a maximal length h between occurrences of words are allowed. The method facilitates the computation of p-values for testing procedures. A word is allowed to contain other words of the collection, making the computation more general, but also more difficult. The underlying sequence is assumed to be Markovian of an arbitrary order.