We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Log-concave random variables and their various properties play an increasingly important role in probability, statistics, and other fields. For a distribution F, denote by 𝒟F the set of distributions G such that the convolution of F and G has a log-concave probability mass function or probability density function. In this paper, we investigate sufficient and necessary conditions under which 𝒟F ⊆ 𝒟G, where F and G belong to a parametric family of distributions. Both discrete and continuous settings are considered.
We consider a continuous, infinitely divisible random field in ℝd, d = 1, 2, 3, given as an integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy measure. For a large class of such random fields, we compute the asymptotic probability that the excursion set at level x contains some rotation of an object with fixed radius as x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail of the underlying Lévy measure.
Current literature on stochastic dominance assumes utility/loss functions to be the same across random variables. However, decision models with inconsistent utility functions have been proposed in the literature. The use of inconsistent loss functions when comparing between two random variables can also be appropriate under other problem settings. In this paper we generalize almost stochastic dominance to problems with inconsistent utility/loss functions. In particular, we propose a set of conditions that is necessary and sufficient for clear preferences when the utility/loss functions are allowed to vary across different random variables.
Taylor's law (TL) originated as an empirical pattern in ecology. In many sets of samples of population density, the variance of each sample was approximately proportional to a power of the mean of that sample. In a family of nonnegative random variables, TL asserts that the population variance is proportional to a power of the population mean. TL, sometimes called fluctuation scaling, holds widely in physics, ecology, finance, demography, epidemiology, and other sciences, and characterizes many classical probability distributions and stochastic processes such as branching processes and birth-and-death processes. We demonstrate analytically for the first time that a version of TL holds for a class of distributions with infinite mean. These distributions, a subset of stable laws, and the associated TL differ qualitatively from those of light-tailed distributions. Our results employ and contribute to the methodology of Albrecher and Teugels (2006) and Albrecher et al. (2010). This work opens a new domain of investigation for generalizations of TL.
In this paper we study general aggregation of stochastic arrangement increasing random variables, including both the generalized linear combination and the standard aggregation as special cases. In terms of monotonicity, supermodularity, and convexity of the kernel function, we develop several sufficient conditions for the increasing convex order on the generalized aggregations. Some applications in reliability and risks are also presented.
The present paper is devoted to complete convergence and the strong law of large numbers under moment conditions near those of the law of the single logarithm (LSL) for independent and identically distributed arrays. More precisely, we investigate limit theorems under moment conditions which are stronger than $2p$ for any $p<2$, in which case we know that there is almost sure convergence to 0, and weaker than $E\,X^{4}/(\log ^{+}|X|)^{2}<\infty$, in which case the LSL holds.
We observe the frog model, an infinite system of interacting random walks, on ℤ with an asymmetric underlying random walk. For certain initial frog distributions we construct an explicit formula for the moments of the leftmost visited site, as well as their asymptotic scaling limits as the drift of the underlying random walk vanishes. We also provide conditions in which the lower bound can be scaled to converge in probability to the degenerate distribution at 1 as the drift vanishes.
In the present work, some new maximal inequalities for nonnegative N-demi(super)martingales are first developed. As an application, new bounds for the cumulative distribution function of the waiting time for the first occurrence of a scan statistic in a sequence of independent and identically distributed (i.i.d.) binary trials are obtained. A numerical study is also carried out for investigating the behavior of the new bounds.
Logarithmic asymptotics of the mean process {Sn∕n} are investigated in the presence of heavy-tailed increments. As a consequence, a full large deviations principle for means is obtained when the hazard function of an increment is regularly varying with index α∈(0,1). This class includes all stretched exponential distributions. Thus, the previous research of Gantert et al. (2014) is extended. Furthermore, the presented proofs are more transparent than the techniques used by Nagaev (1979). In addition, the novel approach is compatible with other common classes of distributions, e.g. those of lognormal type.
We provide some results for the comparison of the failure times and interfailure times of two systems based on a replacement policy proposed by Kapodistria and Psarrakos (2012). In particular, we show that when the first failure times are ordered in terms of the dispersive order (or, the excess wealth order), then the successive interfailure times are ordered in terms of the usual stochastic order (respectively, the increasing convex order). As a consequence, we provide comparison results for the cumulative residual entropies of the systems and their dynamic versions.
The (conditional or unconditional) distribution of the continuous scan statistic in a one-dimensional Poisson process may be approximated by that of a discrete analogue via time discretization (to be referred to as the discrete approximation). Using a change of measure argument, we derive the first-order term of the discrete approximation which involves some functionals of the Poisson process. Richardson's extrapolation is then applied to yield a corrected (second-order) approximation. Numerical results are presented to compare various approximations.
Comparison results are given for time-inhomogeneous Markov processes with respect to function classes with induced stochastic orderings. The main result states the comparison of two processes, provided that the comparability of their infinitesimal generators as well as an invariance property of one process is assumed. The corresponding proof is based on a representation result for the solutions of inhomogeneous evolution problems in Banach spaces, which extends previously known results from the literature. Based on this representation, an ordering result for Markov processes induced by bounded and unbounded function classes is established. We give various applications to time-inhomogeneous diffusions, to processes with independent increments, and to Lévy-driven diffusion processes.
We improve the Chen‒Stein bounds when applied to the probability of a union. When the probability is small, the improvement in the distance from the lower to the upper bound is roughly a factor of 2. Further improvements are determined when the events of the union are either negatively or positively dependent.
An extended model of order statistics based on possibly different distributions is introduced and analyzed. In the interpretation of successive failure times in a 𝑘-out-of-𝑛 system, say, until each failure, the time periods under previous (increasing) loads exerted on the remaining components are recorded. Then the lifetime distribution of the system depends on the complete failure scheme. Thus, order statistics with memory provide an alternative to the use of sequential order statistics, which form a Markov chain. The quantities as well as their spacings, the interoccurrence times, can be compared by means of stochastic ordering.
The aim of this paper is to find a formula for the double Laplace transform of the truncated variation of a Brownian motion with drift. In order to find the double Laplace transform, we also prove some identities for the Brownian motion with drift, which may be of independent interest.
The problem of inferring the distribution of a random vector given that its norm is large requires modeling a homogeneous limiting density. We suggest an approach based on graphical models which is suitable for high-dimensional vectors. We introduce the notion of one-component regular variation to describe a function that is regularly varying in its first component. We extend the representation and Karamata's theorem to one-component regularly varying functions, probability distributions and densities, and explain why these results are fundamental in multivariate extreme-value theory. We then generalize the Hammersley–Clifford theorem to relate asymptotic conditional independence to a factorization of the limiting density, and use it to model multivariate tails.
We consider compound geometric approximation for a nonnegative, integer-valued random variable W. The bound we give is straightforward but relies on having a lower bound on the failure rate of W. Applications are presented to M/G/1 queuing systems, for which we state explicit bounds in approximations for the number of customers in the system and the number of customers served during a busy period. Other applications are given to birth–death processes and Poisson processes.
Let (X1,...,Xn) be multivariate normal, with mean vector 𝛍 and covariance matrix 𝚺, and let Sn=eX1+⋯+eXn. The Laplace transform ℒ(θ)=𝔼e-θSn∝∫exp{-hθ(𝒙)}d𝒙 is represented as ℒ̃(θ)I(θ), where ℒ̃(θ) is given in closed form and I(θ) is the error factor (≈1). We obtain ℒ̃(θ) by replacing hθ(𝒙) with a second-order Taylor expansion around its minimiser 𝒙*. An algorithm for calculating the asymptotic expansion of 𝒙* is presented, and it is shown that I(θ)→ 1 as θ→∞. A variety of numerical methods for evaluating I(θ) is discussed, including Monte Carlo with importance sampling and quasi-Monte Carlo. Numerical examples (including Laplace-transform inversion for the density of Sn) are also given.
The explicit form for the characteristic function of a stable distribution on the line is derived analytically by solving the associated functional equation and applying the theory of regular variation, without appeal to the general Lévy‒Khintchine integral representation of infinitely divisible distributions.