We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Shannon entropy based on the probability density function is a key information measure with applications in different areas. Some alternative information measures have been proposed in the literature. Two relevant ones are the cumulative residual entropy (based on the survival function) and the cumulative past entropy (based on the distribution function). Recently, some extensions of these measures have been proposed. Here, we obtain some properties for the generalized cumulative past entropy. In particular, we prove that it determines the underlying distribution. We also study this measure in coherent systems and a closely related generalized past cumulative Kerridge inaccuracy measure.
In this paper, we discuss new bounds and approximations for tail probabilities of certain discrete distributions. Several different methods are used to obtain bounds and/or approximations. Excellent upper and lower bounds are obtained for the Poisson distribution. Excellent approximations (and not bounds necessarily) are also obtained for other discrete distributions. Numerical comparisons made to previously proposed methods demonstrate that the new bounds and/or approximations compare very favorably. Some conjectures are made.
It is well known that assumptions of monotonicity in size-bias couplings may be used to prove simple, yet powerful, Poisson approximation results. Here we show how these assumptions may be relaxed, establishing explicit Poisson approximation bounds (depending on the first two moments only) for random variables which satisfy an approximate version of these monotonicity conditions. These are shown to be effective for models where an underlying random variable of interest is contaminated with noise. We also state explicit Poisson approximation bounds for sums of associated or negatively associated random variables. Applications are given to epidemic models, extremes, and random sampling. Finally, we also show how similar techniques may be used to relax the assumptions needed in a Poincaré inequality and in a normal approximation result.
Mao and Hu (2010) left an open problem about the hazard rate order between the largest order statistics from two samples of n geometric random variables. Du et al. (2012) solved this open problem when n = 2, and Wang (2015) solved for 2 ≤ n ≤ 9. In this paper we completely solve this problem for any value of n.
We study the tail asymptotic of subexponential probability densities on the real line. Namely, we show that the n-fold convolution of a subexponential probability density on the real line is asymptotically equivalent to this density multiplied by n. We prove Kesten's bound, which gives a uniform in n estimate of the n-fold convolution by the tail of the density. We also introduce a class of regular subexponential functions and use it to find an analogue of Kesten's bound for functions on ℝd. The results are applied to the study of the fundamental solution to a nonlocal heat equation.
An infinite convergent sum of independent and identically distributed random variables discounted by a multiplicative random walk is called perpetuity, because of a possible actuarial application. We provide three disjoint groups of sufficient conditions which ensure that the right tail of a perpetuity ℙ{X > x} is asymptotic to axce-bx as x → ∞ for some a, b > 0, and c ∈ ℝ. Our results complement those of Denisov and Zwart (2007). As an auxiliary tool we provide criteria for the finiteness of the one-sided exponential moments of perpetuities. We give several examples in which the distributions of perpetuities are explicitly identified.
For many practical situations in reliability engineering, components in the system are usually dependent since they generally work in a collaborative environment. In this paper we build sufficient conditions for comparing two coherent systems under different random environments in the sense of the usual stochastic, hazard rate, reversed hazard rate, and likelihood ratio orders. Applications and numerical examples are provided to illustrate all the theoretical results established here.
We study the conditions for unimodality of the lifetime distribution of a coherent system when the ordered component lifetimes in the system are described by generalized order statistics. Results for systems with independent and identically distributed lifetimes of components are included in this setting. The findings are illustrated with some examples for different types of systems. In particular, coherent systems with strictly bimodal density functions are presented in the case of independent standard uniform distributed lifetimes of components. Furthermore, we use the results to derive a sharp upper bound on the expected system lifetime in terms of the mean and the standard deviation of the underlying distribution.
For all α > 0 and real random variables X, we establish sharp bounds for the smallest and the largest deviation of αX from the logarithmic distribution also known as Benford's law. In the case of uniform X, the value of the smallest possible deviation is determined explicitly. Our elementary calculation puts into perspective the recurring claims that a random variable conforms to Benford's law, at least approximately, whenever it has large spread.
We consider the distribution of the age of an individual picked uniformly at random at some fixed time in a linear birth-and-death process. By exploiting a bijection between the birth-and-death tree and a contour process, we derive the cumulative distribution function for this distribution. In the critical and supercritical cases, we also give rates for the convergence in terms of the total variation and other metrics towards the appropriate exponential distribution.
In this paper we prove that a parallel system consisting of Weibull components with different scale parameters ages faster than a parallel system comprising Weibull components with equal scale parameters in the convex transform order when the lifetimes of components of both systems have different shape parameters satisfying some restriction. Moreover, while comparing these two systems, we show that the dispersive and the usual stochastic orders, and the right-spread order and the increasing convex order are equivalent. Further, some of the known results in the literature concerning comparisons of k-out-of-n systems in the exponential model are extended to the Weibull model. We also provide solutions to two open problems mentioned by Balakrishnan and Zhao (2013) and Zhao et al. (2016).
We show that under some slight assumptions, the positive sojourn time of a product of symmetric processes converges towards ½ as the number of processes increases. Monotony properties are then exhibited in the case of symmetric stable processes, and used, via a recurrence relation, to obtain upper and lower bounds on the moments of the occupation time (in the first and third quadrants) for two-dimensional Brownian motion. Explicit values are also given for the second and third moments in the n-dimensional Brownian case.
Let X1, X2, . . . be independent copies of a random vector X with values in ℝd and a continuous distribution function. The random vector Xn is a complete record, if each of its components is a record. As we require X to have independent components, crucial results for univariate records clearly carry over. But there are substantial differences as well. While there are infinitely many records in the d = 1 case, they occur only finitely many times in the series if d ≥ 2. Consequently, there is a terminal complete record with probability 1. We compute the distribution of the random total number of complete records and investigate the distribution of the terminal record. For complete records, the sequence of waiting times forms a Markov chain, but unlike the univariate case now the state at ∞ is an absorbing element of the state space.
In this work we consider the generalized Pólya process with baseline intensity function r and parameters α and β recently studied by Cha (2014). The aim of this work is to provide both univariate and multivariate stochastic comparisons between two generalized Pólya processes with different baseline intensity functions and the same parameters α and β for the epoch and inter-epoch times of the two processes. The comparisons are analogous to stochastic comparisons in Belzunce et al. (2001) for two nonhomogeneous Poisson or pure-birth processes with different intensity functions. Moreover, we study both univariate and multivariate ageing properties of the epoch and inter-epoch times of the generalized Pólya process.
We introduce a large and flexible class of discrete tempered stable distributions, and analyze the domains of attraction for both this class and the related class of positive tempered stable distributions. Our results suggest that these are natural models for sums of independent and identically distributed random variables with tempered heavy tails, i.e. tails that appear to be heavy up to a point, but ultimately decay faster.
Bounds of the quantile entropy in the past lifetime of some ageing classes are explored firstly. The quantile entropy in the past lifetime of a random variable is shown to be increasing if its expected inactivity time is increasing. Some closure properties of the less quantile entropy in the past lifetime order are obtained under the model of generalized order statistics. Moreover, sufficient conditions are given for a function of a random variable and for a weighted random variable to have more quantile entropy in the past lifetime than original random variable.
We show that for $p\geqslant 1$, the $p$th moment of suprema of linear combinations of independent centered random variables are comparable with the sum of the first moment and the weak $p$th moment provided that $2q$th and $q$th integral moments of these variables are comparable for all $q\geqslant 2$. The latest condition turns out to be necessary in the independent and identically distributed case.
Let X and Y be two independent and nonnegative random variables with corresponding distributions F and G. Denote by H the distribution of the product XY, called the product convolution of F and G. Cline and Samorodnitsky (1994) proposed sufficient conditions for H to be subexponential, given the subexponentiality of F. Relying on a related result of Tang (2008) on the long-tail of the product convolution, we obtain a necessary and sufficient condition for the subexponentiality of H, given that of F. We also study the reverse problem and obtain sufficient conditions for the subexponentiality of F, given that of H. Finally, we apply the obtained results to the asymptotic study of the ruin probability in a discrete-time insurance risk model with stochastic returns.
We investigate conditions in order to decide whether a given sequence of real numbers represents expected maxima or expected ranges. The main result provides a novel necessary and sufficient condition, relating an expected maxima sequence to a translation of a Bernstein function through its Lévy–Khintchine representation.