To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note we establish a uniform bound for the distribution of a sum Sn=X1+···+Xn of independent non-homogeneous Bernoulli trials. Specifically, we prove that σn(Sn = j) ≤ η, where σn denotes the standard deviation of Sn, and η is a universal constant. We compute the best possible constant η ~ 0.4688 and we show that the bound also holds for limits of sums and differences of Bernoullis, including the Poisson laws which constitute the worst case and attain the bound. We also investigate the optimal bounds for n and j fixed. An application to estimate the rate of convergence of Mann's fixed-point iterations is presented.
In this paper we consider general counting processes stopped at a random time T, independent of the process. Provided that T has the decreasing failure rate (DFR) property, we present sufficient conditions on the arrival times so that the number of events occurring before T preserves the DFR property of T. In particular, when the interarrival times are independent, we consider applications concerning the DFR property of the stationary number of customers waiting in queue for specific queueing models.
Exact upper and lower bounds on the difference between the arithmetic and geometric means are obtained. The inequalities providing these bounds may be viewed, respectively, as a reverse Jensen inequality and an improvement of the direct Jensen inequality, in the case when the convex function is the exponential.
Let Xλ1, Xλ2, …, Xλnbe independent Weibull random variables with Xλi ∼ W(α, λi), where λi > 0 for i = 1, …, n. Let Xn:nλ denote the lifetime of the parallel system formed from Xλ1, Xλ2, …, Xλn. We investigate the effect of the changes in the scale parameters (λ1, …, λn) on the magnitude of Xn:nλ according to reverse hazard rate and likelihood ratio orderings.
We consider semicoherent and mixed systems with exchangeable components. We present sharp lower and upper bounds on various dispersion measures (in particular, variance and median absolute deviation) of the system lifetime, expressed in terms of the system signature and the dispersion of a single component lifetime. We construct joint exchangeable distributions of component lifetimes with two-point marginals which attain the bounds in the limit.
In this paper we develop two permutation theorems on argument increasing functions of a multivariate random vector and a real parameter vector. We use the unified approach of our two theorems to provide some important theoretical results on the capital allocation in actuarial science, the deductible and upper limit allocations in insurance policy, and portfolio allocation in financial engineering. Our results successfully improve or extend the corresponding works in the literature.
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components of the original random structure. In this paper we build on previous work, and derive results in the multivariate case and in situations where regular variation is not restricted to one particular direction or quadrant.
We derive multivariate moment generating functions for the conditional and stationary distributions of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). For any fixed vector of observation times t1,…,tn, we find the conditional joint distribution of (X(t1),…,X(tn)) is a multivariate noncentral chi-squared distribution and the stationary joint distribution is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. Multivariate cumulants of the stationary distribution have a simple and computationally tractable expression. We also obtain the moment generating function for the increment X(t + δ) - X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution.
We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.
We construct random fields with Pólya-type autocorrelation function and dampened Pólya cross-correlation function. The marginal distribution of the random fields may be taken as any infinitely divisible distribution with finite variance, and the random fields are fully characterized in terms of their joint characteristic function. This makes available a new class of non-Gaussian random fields with flexible correlation structure for use in modeling and estimation.
We observe that the technique of Markov contraction can be used to establish measure concentration for a broad class of noncontracting chains. In particular, geometric ergodicity provides a simple and versatile framework. This leads to a short, elementary proof of a general concentration inequality for Markov and hidden Markov chains, which supersedes some of the known results and easily extends to other processes such as Markov trees. As applications, we provide a Dvoretzky-Kiefer-Wolfowitz-type inequality and a uniform Chernoff bound. All of our bounds are dimension-free and hold for countably infinite state spaces.
We study a type of nonnormal small jump approximation of infinitely divisible distributions. By incorporating compound Poisson, gamma, and normal distributions, the approximation has a higher order of cumulant matching than its normal counterpart, and, hence, in many cases a higher rate of approximation error decay as the cutoff for the jump size tends to 0. The parameters of the approximation are easy to fix, and its random sampling has the same order of computational complexity as the normal approximation. An error bound of the approximation in terms of the total variation distance is derived. Simulations empirically show that the nonnormal approximation can have a significantly smaller error than its normal counterpart.
Thestudy concerns semistability and stability of probability measures on a convex cone, showing that the set $S(\boldsymbol{{\it\mu}})$ of all positive numbers $t>0$ such that a given probability measure $\boldsymbol{{\it\mu}}$ is $t$-semistable establishes a closed subgroup of the multiplicative group $R^{+}$; semistability and stability exponents of probability measures are positive numbers if and only if the neutral element of the convex cone coincides with the origin; a probability measure is (semi)stable if and only if its domain of (semi-)attraction is not empty; and the domain of attraction of a given stable probability measure coincides with its domain of semi-attraction.
We consider the problem of stochastic comparison of general GARCH-like processes for different parameters and different distributions of the innovations. We identify several stochastic orders that are propagated from the innovations to the GARCH process itself, and we discuss their interpretations. We focus on the convex order and show that in the case of symmetric innovations it is also propagated to the cumulated sums of the GARCH process. More generally, we discuss multivariate comparison results related to the multivariate convex and supermodular orders. Finally, we discuss ordering with respect to the parameters in the GARCH(1, 1) case.
Suppose that X1, …, Xn are random variables with the same known marginal distribution F but unknown dependence structure. In this paper we study the smallest possible value of P(X1 + · · · + Xn < s) over all possible dependence structures, denoted by mn,F(s). We show that mn,F(ns) → 0 for s no more than the mean of F under weak assumptions. We also derive a limit of mn,F(ns) for any s ∈ R with an error of at most n-1/6 for general continuous distributions. An application of our result to risk management confirms that the worst-case value at risk is asymptotically equivalent to the worst-case expected shortfall for risk aggregation with dependence uncertainty. In the last part of this paper we present a dual presentation of the theory of complete mixability and give dual proofs of theorems in the literature on this concept.
We propose a two-urn model of Pólya type as follows. There are two urns, urn A and urn B. At the beginning, urn A contains rA red and wA white balls and urn B contains rB red and wB white balls. We first draw m balls from urn A and note their colors, say i red and m - iwhite balls. The balls are returned to urn A and bi red and b(m - i) white balls are added to urn B. Next, we draw ℓ balls from urn B and note their colors, say j red and ℓ - j white balls. The balls are returned to urn B and aj red and a(ℓ - j) white balls are added to urn A. Repeat the above action n times and let Xn be the fraction of red balls in urn A and Yn the fraction of red balls in urn B. We first show that the expectations of Xn and Yn have the same limit, and then use martingale theory to show that Xn and Yn converge almost surely to the same limit.
Let T be a stopping time associated with a sequence of independent and identically distributed or exchangeable random variables taking values in {0, 1, 2, …, m}, and let ST,i be the stopped sum denoting the number of appearances of outcome 'i' in X1, …, XT, 0 ≤ i ≤ m. In this paper we present results revealing that, if the distribution of T is known, then we can also derive the joint distribution of (T, ST,0, ST,1, …, ST,m). Two applications, which have independent interest, are offered to illustrate the applicability and the usefulness of the main results.
Let X, B, and Y be the Dirichlet, Bernoulli, and beta-independent random variables such that X ~ D(a0, …, ad), Pr(B = (0, …, 0, 1, 0, …, 0)) = ai / a with a = ∑i=0dai, and Y ~ β(1, a). Then, as proved by Sethuraman (1994), X ~ X(1 - Y) + BY. This gives the stationary distribution of a simple Markov chain on a tetrahedron. In this paper we introduce a new distribution on the tetrahedron called a quasi-Bernoulli distribution Bk(a0, …, ad) with k an integer such that the above result holds when B follows Bk(a0, …, ad) and when Y ~ β(k, a). We extend it even more generally to the case where X and B are random probabilities such that X is Dirichlet and B is quasi-Bernoulli. Finally, the case where the integer k is replaced by a positive number c is considered when a0 = · · · = ad = 1.
Suppose that a system consists of n independent and identically distributed components and that the life lengths of the n components are Xi, i = 1, …, n. For k ∈ {1, …, n - 1}, let X(k)1, …, X(k)n-k be the residual life lengths of the live components following the kth failure in the system. In this paper we extend various stochastic ordering results presented in Bairamov and Arnold (2008) on the residual life lengths of the live components in an (n - k + 1)-out-of-n system, and also present a new result concerning the multivariate stochastic ordering of live components in the two-sample situation. Finally, we also characterize exponential distributions under a weaker condition than those introduced in Bairamov and Arnold (2008) and show that some special ageing properties of the original residual life lengths get preserved by residual life lengths.
Let {Zn}n≥0 be a random walk with a negative drift and independent and identically distributed increments with heavy-tailed distribution, and let M = supn≥0Zn be its supremum. Asmussen and Klüppelberg (1996) considered the behavior of the random walk given that M > x for large x, and obtained a limit theorem, as x → ∞, for the distribution of the quadruple that includes the time τ = τ(x) to exceed level x, position Zτ at this time, position Zτ-1 at the prior time, and the trajectory up to it (similar results were obtained for the Cramér-Lundberg insurance risk process). We obtain here several extensions of this result to various regenerative-type models and, in particular, to the case of a random walk with dependent increments. Particular attention is given to describing the limiting conditional behavior of τ. The class of models includes Markov-modulated models as particular cases. We also study fluid models, the Björk-Grandell risk process, give examples where the order of τ is genuinely different from the random walk case, and discuss which growth rates are possible. Our proofs are purely probabilistic and are based on results and ideas from Asmussen, Schmidli and Schmidt (1999), Foss and Zachary (2002), and Foss, Konstantopoulos and Zachary (2007).