We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use the properties of the Matuszewska indices to show asymptotic inequalities for hazard rates. We discuss the relation between membership in the classes of dominatedly or extended rapidly varying tail distributions and corresponding hazard rate conditions. Convolution closure is established for the class of distributions with extended rapidly varying tails.
Exact lower bounds on the exponential moments of min(y, X) and X1{X < y} are provided given the first two moments of a random variable X. These bounds are useful in work on large deviation probabilities and nonuniform Berry-Esseen bounds, when the Cramér tilt transform may be employed. Asymptotic properties of these lower bounds are presented. Comparative advantages of the so-called Winsorization min(y, X) over the truncation X1{X < y} are demonstrated. An application to option pricing is given.
Improved bounds on the copula of a bivariate random vector are computed when partial information is available, such as the values of the copula on a given subset of [0, 1]2, or the value of a functional of the copula, monotone with respect to the concordance order. These results are then used to compute model-free bounds on the prices of two-asset options which make use of extra information about the dependence structure, such as the price of another two-asset option.
This paper is motivated by relations between association and independence of random variables. It is well known that, for real random variables, independence implies association in the sense of Esary, Proschan and Walkup (1967), while, for random vectors, this simple relationship breaks. We modify the notion of association in such a way that any vector-valued process with independent increments also has associated increments in the new sense - association between blocks. The new notion is quite natural and admits nice characterization for some classes of processes. In particular, using the covariance interpolation formula due to Houdré, Pérez-Abreu and Surgailis (1998), we show that within the class of multidimensional Gaussian processes, block association of increments is equivalent to supermodularity (in time) of the covariance functions. We also define corresponding versions of weak association, positive association, and negative association. It turns out that the central limit theorem for weakly associated random vectors due to Burton, Dabrowski and Dehling (1986) remains valid, if the weak association is relaxed to the weak association between blocks.
In this work we provide sufficient conditions under which a general counting process stopped at a random time independent from the process belongs to the reliability decreasing reversed hazard rate (DRHR) or increasing failure rate (IFR) class. We also give some applications of these results in generalized renewal and trend renewal processes stopped at a random time.
We present a method for computing the probability density function (PDF) and the cumulative distribution function (CDF) of a nonnegative infinitely divisible random variable X. Our method uses the Lévy-Khintchine representation of the Laplace transform Ee-λX = e-ϕ(λ), where ϕ is the Laplace exponent. We apply the Post-Widder method for Laplace transform inversion combined with a sequence convergence accelerator to obtain accurate results. We demonstrate this technique on several examples, including the stable distribution, mixtures thereof, and integrals with respect to nonnegative Lévy processes.
Kochar and Xu (2009) proved that a parallel system with heterogeneous exponential component lifetimes is more skewed (according to the convex transform order) than the system with independent and identically distributed exponential components. In this paper we extend this study to the general k-out-of-n systems for the case when there are only two types of component in the system. An open problem proposed in Pǎltǎnea (2008) is partially solved.
We establish an upper bound on the tails of a random variable that arises as a solution of a stochastic difference equation. In the nonnegative case our bound is similar to a lower bound obtained in Goldie and Grübel (1996).
Consider a continuous-time renewal risk model with a constant force of interest. We assume that claim sizes and interarrival times correspondingly form a sequence of independent and identically distributed random pairs and that each pair obeys a dependence structure described via the conditional tail probability of a claim size given the interarrival time before the claim. We focus on determining the impact of this dependence structure on the asymptotic tail probability of discounted aggregate claims. Assuming that the claim size distribution is subexponential, we derive an exact locally uniform asymptotic formula, which quantitatively captures the impact of the dependence structure. When the claim size distribution is extended regularly varying tailed, we show that this asymptotic formula is globally uniform.
Melamed's theorem states that, for a Jackson queueing network, the equilibrium flow along a link follows a Poisson distribution if and only if no customers can travel along the link more than once. Barbour and Brown (1996) considered the Poisson approximate version of Melamed's theorem by allowing the customers a small probability p of travelling along the link more than once. In this note, we prove that the customer flow process is a Poisson cluster process and then establish a general approximate version of Melamed's theorem that accommodates all possible cases of 0 ≤ p < 1.
In this paper we study the Wiener-Hopf factorization for a class of Lévy processes with double-sided jumps, characterized by the fact that the density of the Lévy measure is given by an infinite series of exponential functions with positive coefficients. We express the Wiener-Hopf factors as infinite products over roots of a certain transcendental equation, and provide a series representation for the distribution of the supremum/infimum process evaluated at an independent exponential time. We also introduce five eight-parameter families of Lévy processes, defined by the fact that the density of the Lévy measure is a (fractional) derivative of the theta function, and we show that these processes can have a wide range of behavior of small jumps. These families of processes are of particular interest for applications, since the characteristic exponent has a simple expression, which allows efficient numerical computation of the Wiener-Hopf factors and distributions of various functionals of the process.
The distributions that result from zero-truncating mixed Poisson (ZTMP) distributions and those obtained from mixing zero-truncated Poisson (MZTP) distributions are characterised based on their probability generating functions. One consequence is that every ZTMP distribution is an MZTP distribution, but not vice versa. These characterisations also indicate that the size-biased version of a Poisson mixture and, under certain regularity conditions, the shifted version of a Poisson mixture are neither ZTMP distributions nor MZTP distributions.
Let {Xi}i=1n be a sequence of random variables with two possible outcomes, denoted 0 and 1. Define a random variable Sn,m to be the maximum number of 1s within any m consecutive trials in {Xi}i=1n. The random variable Sn,m is called a discrete scan statistic and has applications in many areas. In this paper we evaluate the distribution of discrete scan statistics when {Xi}i=1n consists of exchangeable binary trials. We provide simple closed-form expressions for both conditional and unconditional distributions of Sn,m for 2m ≥ n. These results are also new for independent, identically distributed Bernoulli trials, which are a special case of exchangeable trials.
We show that the conjecture of Kannan, Lovász, and Simonovits on isoperimetric properties of convex bodies and log-concave measures is true for log-concave measures of the form ρ(∣x∣B) dx on ℝn and ρ(t,∣x∣B) dx on ℝ1+n, where ∣x∣B is the norm associated to any convex body B already satisfying the conjecture. In particular, the conjecture holds for convex bodies of revolution.
In this paper we further investigate the problem considered by Mizuno (2006) in the special case of identically distributed signals. Specifically, we first propose an alternative sufficient condition of crossing type for the convex order to hold between the conditional expectations given signal. Then, we prove that the bivariate (2,1)-increasing convex order ensures that the conditional expectations are ordered in the convex sense. Finally, the L2 distance between the quantity of interest and its conditional expectation given signal (or expected conditional variance) is shown to decrease when the strength of the dependence increases (as measured by the (2,1)-increasing convex order).
This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.
We introduce and motivate the study of (n + 1) × r arrays X with Bernoulli entries Xk,j and independently distributed rows. We study the distribution of which denotes the number of consecutive pairs of successes (or runs of length 2) when reading the array down the columns and across the rows. With the case r = 1 having been studied by several authors, and permitting some initial inferences for the general case r > 1, we examine various distributional properties and representations of Sn for the case r = 2, and, using a more explicit analysis, the case of multinomial and identically distributed rows. Applications are also given in cases where the array X arises from a Pólya sampling scheme.
For several pairs (P, Q) of classical distributions on ℕ0, we show that their stochastic ordering P ≤stQ can be characterized by their extreme tail ordering equivalent to P({k*})/Q({k*}) ≥ 1 ≥ limk→k*P({k})/Q({k}), with k* and k* denoting the minimum and the supremum of the support of P + Q, and with the limit to be read as P({k*})/Q({k*}) for finite k*. This includes in particular all pairs where P and Q are both binomial (bn1,p1 ≤stbn2,p2 if and only if n1 ≤ n2 and (1 - p1)n1 ≥ (1 - p2)n2, or p1 = 0), both negative binomial (b−r1,p1 ≤stb−r2,p2 if and only if p1 ≥ p2 and p1r1 ≥ p2r2), or both hypergeometric with the same sample size parameter. The binomial case is contained in a known result about Bernoulli convolutions, the other two cases appear to be new. The emphasis of this paper is on providing a variety of different methods of proofs: (i) half monotone likelihood ratios, (ii) explicit coupling, (iii) Markov chain comparison, (iv) analytic calculation, and (v) comparison of Lévy measures. We give four proofs in the binomial case (methods (i)-(iv)) and three in the negative binomial case (methods (i), (iv), and (v)). The statement for hypergeometric distributions is proved via method (i).
In this paper we propose a general bivariate random effect model with special emphasis on frailty models and environmental effect models, and present some stochastic comparisons. The relationship between the conditional and the unconditional hazard gradients are derived and some examples are provided. We investigate how the well-known stochastic orderings between the distributions of two frailties translate into the orderings between the corresponding survival functions. These results are used to obtain the properties of the bivariate multiplicative model and the shared frailty model.
Expectations of unbounded functions of dependent nonnegative integer-valued random variables are approximated by the expectations of the functions of independent copies of these random variables. The Lindeberg method is used.