We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We identify a close relation between stable distributions and the limiting homomorphisms central to the theory of regular variation. In so doing some simplifications are achieved in the direct analysis of these laws in Pitman and Pitman (2016); stable distributions are themselves linked to homomorphy.
In this paper we investigate different methods that may be used to compare coherent systems having heterogeneous components. We consider both the case of systems with independent components and the case of systems with dependent components. In the first case, the comparisons are based on the new concept of the survival signature due to Coolen and Coolen-Maturi (2012) which extends the well-known concept of system signatures to the case of components with lifetimes that need not be independent and identically distributed. In the second case, the comparisons are based on the concept of distortion functions. A graphical procedure (called an RR-plot) is proposed as an alternative to the analytical methods when there are two types of components.
We present some correlated fractional counting processes on a finite-time interval. This will be done by considering a slight generalization of the processes in Borges et al. (2012). The main case concerns a class of space-time fractional Poisson processes and, when the correlation parameter is equal to 0, the univariate distributions coincide with those of the space-time fractional Poisson process in Orsingher and Polito (2012). On the one hand, when we consider the time fractional Poisson process, the multivariate finite-dimensional distributions are different from those presented for the renewal process in Politi et al. (2011). We also consider a case concerning a class of fractional negative binomial processes.
We analyze copulas with a nontrivial singular component by using their Markov kernel representation. In particular, we provide existence results for copulas with a prescribed singular component. The constructions not only help to deal with problems related to multivariate stochastic systems of lifetimes when joint defaults can occur with a nonzero probability, but even provide a copula maximizing the probability of joint default.
We have found a mistake in the proofs of Navarro (2008, Theorem 2.3(b) and 2.3(c)) due to misapplication of properties of hazard rate and likelihood ratio orders. In this paper we show with an example that the stated results do not hold. This example is interesting since it proves some unexpected properties for these orderings under the formation of coherent systems. The result stated in Navarro (2008, Theorem 2.3(a)) for the usual stochastic order is correct.
We consider dynamic versions of the mutual information of lifetime distributions, with a focus on past lifetimes, residual lifetimes, and mixed lifetimes evaluated at different instants. This allows us to study multicomponent systems, by measuring the dependence in conditional lifetimes of two components having possibly different ages. We provide some bounds, and investigate the mutual information of residual lifetimes within the time-transformed exponential model (under both the assumptions of unbounded and truncated lifetimes). Moreover, with reference to the order statistics of a random sample, we evaluate explicitly the mutual information between the minimum and the maximum, conditional on inspection at different times, and show that it is distribution-free in a special case. Finally, we develop a copula-based approach aiming to express the dynamic mutual information for past and residual bivariate lifetimes in an alternative way.
Given two absolutely continuous nonnegative independent random variables, we define the reversed relevation transform as dual to the relevation transform. We first apply such transforms to the lifetimes of the components of parallel and series systems under suitably proportionality assumptions on the hazard rates. Furthermore, we prove that the (reversed) relevation transform is commutative if and only if the proportional (reversed) hazard rate model holds. By repeated application of the reversed relevation transform we construct a decreasing sequence of random variables which leads to new weighted probability densities. We obtain various relations involving ageing notions and stochastic orders. We also exploit the connection of such a sequence to the cumulative entropy and to an operator that is dual to the Dickson-Hipp operator. Iterative formulae for computing the mean and the cumulative entropy of the random variables of the sequence are finally investigated.
We take a fresh look at the classical problem of runs in a sequence of independent and identically distributed coin tosses and derive a general identity/recursion which can be used to compute (joint) distributions of functionals of run types. This generalizes and unifies already existing approaches. We give several examples, derive asymptotics, and pose some further questions.
Consider an absolutely continuous distribution on [0, ∞) with finite mean μ and hazard rate function h(t) ≤ b for all t. For bμ close to 1, we would expect F to be approximately exponential. In this paper we obtain sharp bounds for the Kolmogorov distance between F and an exponential distribution with mean μ, as well as between F and an exponential distribution with failure rate b. We apply these bounds to several examples. Applications are presented to geometric convolutions, birth and death processes, first-passage times, and to decreasing mean residual life distributions.
In this note we establish a uniform bound for the distribution of a sum Sn=X1+···+Xn of independent non-homogeneous Bernoulli trials. Specifically, we prove that σn(Sn = j) ≤ η, where σn denotes the standard deviation of Sn, and η is a universal constant. We compute the best possible constant η ~ 0.4688 and we show that the bound also holds for limits of sums and differences of Bernoullis, including the Poisson laws which constitute the worst case and attain the bound. We also investigate the optimal bounds for n and j fixed. An application to estimate the rate of convergence of Mann's fixed-point iterations is presented.
In this paper we consider general counting processes stopped at a random time T, independent of the process. Provided that T has the decreasing failure rate (DFR) property, we present sufficient conditions on the arrival times so that the number of events occurring before T preserves the DFR property of T. In particular, when the interarrival times are independent, we consider applications concerning the DFR property of the stationary number of customers waiting in queue for specific queueing models.
Exact upper and lower bounds on the difference between the arithmetic and geometric means are obtained. The inequalities providing these bounds may be viewed, respectively, as a reverse Jensen inequality and an improvement of the direct Jensen inequality, in the case when the convex function is the exponential.
Let Xλ1, Xλ2, …, Xλn
be independent Weibull random variables with Xλi ∼ W(α, λi), where λi > 0 for i = 1, …, n. Let Xn:nλ denote the lifetime of the parallel system formed from Xλ1, Xλ2, …, Xλn. We investigate the effect of the changes in the scale parameters (λ1, …, λn) on the magnitude of Xn:nλ according to reverse hazard rate and likelihood ratio orderings.
We consider semicoherent and mixed systems with exchangeable components. We present sharp lower and upper bounds on various dispersion measures (in particular, variance and median absolute deviation) of the system lifetime, expressed in terms of the system signature and the dispersion of a single component lifetime. We construct joint exchangeable distributions of component lifetimes with two-point marginals which attain the bounds in the limit.
In this paper we develop two permutation theorems on argument increasing functions of a multivariate random vector and a real parameter vector. We use the unified approach of our two theorems to provide some important theoretical results on the capital allocation in actuarial science, the deductible and upper limit allocations in insurance policy, and portfolio allocation in financial engineering. Our results successfully improve or extend the corresponding works in the literature.
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components of the original random structure. In this paper we build on previous work, and derive results in the multivariate case and in situations where regular variation is not restricted to one particular direction or quadrant.
We derive multivariate moment generating functions for the conditional and stationary distributions of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). For any fixed vector of observation times t1,…,tn, we find the conditional joint distribution of (X(t1),…,X(tn)) is a multivariate noncentral chi-squared distribution and the stationary joint distribution is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. Multivariate cumulants of the stationary distribution have a simple and computationally tractable expression. We also obtain the moment generating function for the increment X(t + δ) - X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution.
We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.
We construct random fields with Pólya-type autocorrelation function and dampened Pólya cross-correlation function. The marginal distribution of the random fields may be taken as any infinitely divisible distribution with finite variance, and the random fields are fully characterized in terms of their joint characteristic function. This makes available a new class of non-Gaussian random fields with flexible correlation structure for use in modeling and estimation.
We observe that the technique of Markov contraction can be used to establish measure concentration for a broad class of noncontracting chains. In particular, geometric ergodicity provides a simple and versatile framework. This leads to a short, elementary proof of a general concentration inequality for Markov and hidden Markov chains, which supersedes some of the known results and easily extends to other processes such as Markov trees. As applications, we provide a Dvoretzky-Kiefer-Wolfowitz-type inequality and a uniform Chernoff bound. All of our bounds are dimension-free and hold for countably infinite state spaces.