To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to find a formula for the double Laplace transform of the truncated variation of a Brownian motion with drift. In order to find the double Laplace transform, we also prove some identities for the Brownian motion with drift, which may be of independent interest.
The problem of inferring the distribution of a random vector given that its norm is large requires modeling a homogeneous limiting density. We suggest an approach based on graphical models which is suitable for high-dimensional vectors. We introduce the notion of one-component regular variation to describe a function that is regularly varying in its first component. We extend the representation and Karamata's theorem to one-component regularly varying functions, probability distributions and densities, and explain why these results are fundamental in multivariate extreme-value theory. We then generalize the Hammersley–Clifford theorem to relate asymptotic conditional independence to a factorization of the limiting density, and use it to model multivariate tails.
We consider compound geometric approximation for a nonnegative, integer-valued random variable W. The bound we give is straightforward but relies on having a lower bound on the failure rate of W. Applications are presented to M/G/1 queuing systems, for which we state explicit bounds in approximations for the number of customers in the system and the number of customers served during a busy period. Other applications are given to birth–death processes and Poisson processes.
Let (X1,...,Xn) be multivariate normal, with mean vector 𝛍 and covariance matrix 𝚺, and let Sn=eX1+⋯+eXn. The Laplace transform ℒ(θ)=𝔼e-θSn∝∫exp{-hθ(𝒙)}d𝒙 is represented as ℒ̃(θ)I(θ), where ℒ̃(θ) is given in closed form and I(θ) is the error factor (≈1). We obtain ℒ̃(θ) by replacing hθ(𝒙) with a second-order Taylor expansion around its minimiser 𝒙*. An algorithm for calculating the asymptotic expansion of 𝒙* is presented, and it is shown that I(θ)→ 1 as θ→∞. A variety of numerical methods for evaluating I(θ) is discussed, including Monte Carlo with importance sampling and quasi-Monte Carlo. Numerical examples (including Laplace-transform inversion for the density of Sn) are also given.
The explicit form for the characteristic function of a stable distribution on the line is derived analytically by solving the associated functional equation and applying the theory of regular variation, without appeal to the general Lévy‒Khintchine integral representation of infinitely divisible distributions.
We identify a close relation between stable distributions and the limiting homomorphisms central to the theory of regular variation. In so doing some simplifications are achieved in the direct analysis of these laws in Pitman and Pitman (2016); stable distributions are themselves linked to homomorphy.
In this paper we investigate different methods that may be used to compare coherent systems having heterogeneous components. We consider both the case of systems with independent components and the case of systems with dependent components. In the first case, the comparisons are based on the new concept of the survival signature due to Coolen and Coolen-Maturi (2012) which extends the well-known concept of system signatures to the case of components with lifetimes that need not be independent and identically distributed. In the second case, the comparisons are based on the concept of distortion functions. A graphical procedure (called an RR-plot) is proposed as an alternative to the analytical methods when there are two types of components.
We present some correlated fractional counting processes on a finite-time interval. This will be done by considering a slight generalization of the processes in Borges et al. (2012). The main case concerns a class of space-time fractional Poisson processes and, when the correlation parameter is equal to 0, the univariate distributions coincide with those of the space-time fractional Poisson process in Orsingher and Polito (2012). On the one hand, when we consider the time fractional Poisson process, the multivariate finite-dimensional distributions are different from those presented for the renewal process in Politi et al. (2011). We also consider a case concerning a class of fractional negative binomial processes.
We analyze copulas with a nontrivial singular component by using their Markov kernel representation. In particular, we provide existence results for copulas with a prescribed singular component. The constructions not only help to deal with problems related to multivariate stochastic systems of lifetimes when joint defaults can occur with a nonzero probability, but even provide a copula maximizing the probability of joint default.
We have found a mistake in the proofs of Navarro (2008, Theorem 2.3(b) and 2.3(c)) due to misapplication of properties of hazard rate and likelihood ratio orders. In this paper we show with an example that the stated results do not hold. This example is interesting since it proves some unexpected properties for these orderings under the formation of coherent systems. The result stated in Navarro (2008, Theorem 2.3(a)) for the usual stochastic order is correct.
We consider dynamic versions of the mutual information of lifetime distributions, with a focus on past lifetimes, residual lifetimes, and mixed lifetimes evaluated at different instants. This allows us to study multicomponent systems, by measuring the dependence in conditional lifetimes of two components having possibly different ages. We provide some bounds, and investigate the mutual information of residual lifetimes within the time-transformed exponential model (under both the assumptions of unbounded and truncated lifetimes). Moreover, with reference to the order statistics of a random sample, we evaluate explicitly the mutual information between the minimum and the maximum, conditional on inspection at different times, and show that it is distribution-free in a special case. Finally, we develop a copula-based approach aiming to express the dynamic mutual information for past and residual bivariate lifetimes in an alternative way.
Given two absolutely continuous nonnegative independent random variables, we define the reversed relevation transform as dual to the relevation transform. We first apply such transforms to the lifetimes of the components of parallel and series systems under suitably proportionality assumptions on the hazard rates. Furthermore, we prove that the (reversed) relevation transform is commutative if and only if the proportional (reversed) hazard rate model holds. By repeated application of the reversed relevation transform we construct a decreasing sequence of random variables which leads to new weighted probability densities. We obtain various relations involving ageing notions and stochastic orders. We also exploit the connection of such a sequence to the cumulative entropy and to an operator that is dual to the Dickson-Hipp operator. Iterative formulae for computing the mean and the cumulative entropy of the random variables of the sequence are finally investigated.
We take a fresh look at the classical problem of runs in a sequence of independent and identically distributed coin tosses and derive a general identity/recursion which can be used to compute (joint) distributions of functionals of run types. This generalizes and unifies already existing approaches. We give several examples, derive asymptotics, and pose some further questions.
Consider an absolutely continuous distribution on [0, ∞) with finite mean μ and hazard rate function h(t) ≤ b for all t. For bμ close to 1, we would expect F to be approximately exponential. In this paper we obtain sharp bounds for the Kolmogorov distance between F and an exponential distribution with mean μ, as well as between F and an exponential distribution with failure rate b. We apply these bounds to several examples. Applications are presented to geometric convolutions, birth and death processes, first-passage times, and to decreasing mean residual life distributions.
In this note we establish a uniform bound for the distribution of a sum Sn=X1+···+Xn of independent non-homogeneous Bernoulli trials. Specifically, we prove that σn(Sn = j) ≤ η, where σn denotes the standard deviation of Sn, and η is a universal constant. We compute the best possible constant η ~ 0.4688 and we show that the bound also holds for limits of sums and differences of Bernoullis, including the Poisson laws which constitute the worst case and attain the bound. We also investigate the optimal bounds for n and j fixed. An application to estimate the rate of convergence of Mann's fixed-point iterations is presented.
In this paper we consider general counting processes stopped at a random time T, independent of the process. Provided that T has the decreasing failure rate (DFR) property, we present sufficient conditions on the arrival times so that the number of events occurring before T preserves the DFR property of T. In particular, when the interarrival times are independent, we consider applications concerning the DFR property of the stationary number of customers waiting in queue for specific queueing models.
Exact upper and lower bounds on the difference between the arithmetic and geometric means are obtained. The inequalities providing these bounds may be viewed, respectively, as a reverse Jensen inequality and an improvement of the direct Jensen inequality, in the case when the convex function is the exponential.
Let Xλ1, Xλ2, …, Xλnbe independent Weibull random variables with Xλi ∼ W(α, λi), where λi > 0 for i = 1, …, n. Let Xn:nλ denote the lifetime of the parallel system formed from Xλ1, Xλ2, …, Xλn. We investigate the effect of the changes in the scale parameters (λ1, …, λn) on the magnitude of Xn:nλ according to reverse hazard rate and likelihood ratio orderings.
We consider semicoherent and mixed systems with exchangeable components. We present sharp lower and upper bounds on various dispersion measures (in particular, variance and median absolute deviation) of the system lifetime, expressed in terms of the system signature and the dispersion of a single component lifetime. We construct joint exchangeable distributions of component lifetimes with two-point marginals which attain the bounds in the limit.
In this paper we develop two permutation theorems on argument increasing functions of a multivariate random vector and a real parameter vector. We use the unified approach of our two theorems to provide some important theoretical results on the capital allocation in actuarial science, the deductible and upper limit allocations in insurance policy, and portfolio allocation in financial engineering. Our results successfully improve or extend the corresponding works in the literature.