To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\{Y_{1},\ldots ,Y_{n}\}$ be a collection of interdependent nonnegative random variables, with $Y_{i}$ having an exponentiated location-scale model with location parameter $\mu _i$, scale parameter $\delta _i$ and shape (skewness) parameter $\beta _i$, for $i\in \mathbb {I}_{n}=\{1,\ldots ,n\}$. Furthermore, let $\{L_1^{*},\ldots ,L_n^{*}\}$ be a set of independent Bernoulli random variables, independently of $Y_{i}$'s, with $E(L_{i}^{*})=p_{i}^{*}$, for $i\in \mathbb {I}_{n}.$ Under this setup, the portfolio of risks is the collection $\{T_{1}^{*}=L_{1}^{*}Y_{1},\ldots ,T_{n}^{*}=L_{n}^{*}Y_{n}\}$, wherein $T_{i}^{*}=L_{i}^{*}Y_{i}$ represents the $i$th claim amount. This article then presents several sufficient conditions, under which the smallest claim amounts are compared in terms of the usual stochastic and hazard rate orders. The comparison results are obtained when the dependence structure among the claim severities are modeled by (i) an Archimedean survival copula and (ii) a general survival copula. Several examples are also presented to illustrate the established results.
There are two types of tempered stable (TS) based Ornstein–Uhlenbeck (OU) processes: (i) the OU-TS process, the OU process driven by a TS subordinator, and (ii) the TS-OU process, the OU process with TS marginal law. They have various applications in financial engineering and econometrics. In the literature, only the second type under the stationary assumption has an exact simulation algorithm. In this paper we develop a unified approach to exactly simulate both types without the stationary assumption. It is mainly based on the distributional decomposition of stochastic processes with the aid of an acceptance–rejection scheme. As the inverse Gaussian distribution is an important special case of TS distribution, we also provide tailored algorithms for the corresponding OU processes. Numerical experiments and tests are reported to demonstrate the accuracy and effectiveness of our algorithms, and some further extensions are also discussed.
For two n-dimensional elliptical random vectors X and Y, we establish an identity for $\mathbb{E}[f({\bf Y})]- \mathbb{E}[f({\bf X})]$, where $f\,{:}\, \mathbb{R}^n \rightarrow \mathbb{R}$ satisfies some regularity conditions. Using this identity we provide a unified method to derive sufficient and necessary conditions for classifying multivariate elliptical random vectors according to several main integral stochastic orders. As a consequence we obtain new inequalities by applying the method to multivariate elliptical distributions. The results generalize the corresponding ones for multivariate normal random vectors in the literature.
Two-sided bounds are explored for concentration functions and Rényi entropies in the class of discrete log-concave probability distributions. They are used to derive certain variants of the entropy power inequalities.
Pareto distribution is an important distribution in extreme value theory. In this paper, we consider parallel systems with Pareto components and study the effect of heterogeneity on skewness of such systems. It is shown that, when the lifetimes of components have different shape parameters, the parallel system with heterogeneous Pareto component lifetimes is more skewed than the system with independent and identically distributed Pareto components. However, for the case when the lifetimes of components have different scale parameters, the result gets reversed in the sense of star ordering. We also establish the relation between star ordering and dispersive ordering by extending the result of Deshpande and Kochar [(1983). Dispersive ordering is the same as tail ordering. Advances in Applied Probability 15(3): 686–687] from support $(0, \infty )$ to general supports $(a, \infty )$, $a > 0$. As a consequence, we obtain some new results on dispersion of order statistics from heterogeneous Pareto samples with respect to dispersive ordering.
We show that the sequence of moments of order less than 1 of averages of i.i.d. positive random variables is log-concave. For moments of order at least 1, we conjecture that the sequence is log-convex and show that this holds eventually for integer moments (after neglecting the first $p^2$ terms of the sequence).
We prove the sharp bound for the probability that two experts who have access to different information, represented by different $\sigma$-fields, will give radically different estimates of the probability of an event. This is relevant when one combines predictions from various experts in a common probability space to obtain an aggregated forecast. The optimizer for the bound is explicitly described. This paper was originally titled ‘Contradictory predictions’.
We consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.
Extended gamma processes have been seen as a flexible extension of standard gamma processes in the recent reliability literature, for the purpose of cumulative deterioration modeling. The probabilistic properties of the standard gamma process have been well explored since the 1970s, whereas those of its extension remain largely unexplored. In particular, stochastic comparisons between degradation levels modeled by standard gamma processes and ageing properties for the corresponding level-crossing times are now well understood. The aim of this paper is to explore similar properties for extended gamma processes and see which ones can be broadened to this new context. As a by-product, new stochastic comparisons for convolutions of gamma random variables are also obtained.
Comparison results for Markov processes with respect to function-class-induced (integral) stochastic orders have a long history. The most general results so far for this problem have been obtained based on the theory of evolution systems on Banach spaces. In this paper we transfer the martingale comparison method, known for the comparison of semimartingales to Markovian semimartingales, to general Markov processes. The basic step of this martingale approach is the derivation of the supermartingale property of the linking process, giving a link between the processes to be compared. This property is achieved using the characterization of Markov processes by the associated martingale problem in an essential way. As a result, the martingale comparison method gives a comparison result for Markov processes under a general alternative but related set of regularity conditions compared to the evolution system approach.
We give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne which can be seen as a generalization of a characterization of Poisson law due to Rényi and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the moments of the compound distributions occurring in the extended collective model in non-life insurance.
Draw-down time for a stochastic process is the first passage time of a draw-down level that depends on the previous maximum of the process. In this paper we study the draw-down-related Parisian ruin problem for spectrally negative Lévy risk processes. Intuitively, a draw-down Parisian ruin occurs when the surplus process has continuously stayed below the dynamic draw-down level for a fixed amount of time. We introduce the draw-down Parisian ruin time and solve the corresponding two-sided exit problems via excursion theory. We also find an expression for the potential measure for the process killed at the draw-down Parisian time. As applications, we obtain new results for spectrally negative Lévy risk processes with dividend barrier and with Parisian ruin.
We introduce a multivariate class of distributions with support I, a k-orthotope in $[0,\infty)^{k}$, which is dense in the set of all k-dimensional distributions with support I. We call this new class ‘multivariate finite-support phase-type distributions’ (MFSPH). Though we generally define MFSPH distributions on any finite k-orthotope in $[0,\infty)^{k}$, here we mainly deal with MFSPH distributions with support $[0,1)^{k}$. The distribution function of an MFSPH variate is computed by using that of a variate in the MPH$^{*} $ class, the multivariate class of distributions introduced by Kulkarni (1989). The marginal distributions of MFSPH variates are found as FSPH distributions, the class studied by Ramaswami and Viswanath (2014). Some properties, including the mixture property, of MFSPH distributions are established. Estimates of the parameters of a particular class of bivariate finite-support phase-type distributions are found by using the expectation-maximization algorithm. Simulated samples are used to demonstrate how this class could be used as approximations for bivariate finite-support distributions.
In the literature of stochastic orders, one rarely finds results characterizing non-comparability of random variables. We prove simple tools implying the non-comparability with respect to the convex transform order. The criteria are used, among other applications, to provide a negative answer for a conjecture about comparability in a much broader scope than its initial statement.
For independent exponentially distributed random variables $X_i$, $i\in {\mathcal{N}}$, with distinct rates ${\lambda}_i$ we consider sums $\sum_{i\in\mathcal{A}} X_i$ for $\mathcal{A}\subseteq {\mathcal{N}}$ which follow generalized exponential mixture distributions. We provide novel explicit results on the conditional distribution of the total sum $\sum_{i\in {\mathcal{N}}}X_i$ given that a subset sum $\sum_{j\in \mathcal{A}}X_j$ exceeds a certain threshold value $t>0$, and vice versa. Moreover, we investigate the characteristic tail behavior of these conditional distributions for $t\to\infty$. Finally, we illustrate how our probabilistic results can be applied in practice by providing examples from both reliability theory and risk management.
In this paper we first use the distribution of the number of records to demonstrate that the right tail probabilities of counts of rare events are generally better approximated by the right tail probabilities of a Poisson distribution than those of the normal distribution. We then show that the moderate deviations in Poisson approximation generally require an adjustment and, with suitable adjustment, we establish better error estimates of the moderate deviations in Poisson approximation than those in [18]. Our estimates contain no unspecified constants and are easy to apply. We illustrate the use of the theorems via six applications: Poisson-binomial distribution, the matching problem, the occupancy problem, the birthday problem, random graphs, and 2-runs. The paper complements the works [16], [8], and [18].
We investigate stochastic comparisons of parallel systems (corresponding to the largest-order statistics) with respect to the reversed hazard rate and likelihood ratio orders for the proportional reversed hazard rate (PRHR) model. As applications of the main results, we obtain the equivalent characterizations of stochastic comparisons with respect to the reversed hazard rate and likelihood rate orders for the exponentiated generalized gamma and exponentiated Pareto distributions. Our results recover and strengthen some recent results in the literature.
We characterize the second order subexponentiality of an infinitely divisible distribution on the real line under an exponential moment assumption. We investigate the asymptotic behaviour of the difference between the tails of an infinitely divisible distribution and its Lévy measure. Moreover, we study the second order asymptotic behaviour of the tail of the $t$th convolution power of an infinitely divisible distribution. The density version for a self-decomposable distribution on the real line without an exponential moment assumption is also given. Finally, the regularly varying case for a self-decomposable distribution on the half line is discussed.