To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For coherent systems with components and active redundancies having heterogeneous and dependent lifetimes, we prove that the lifetime of system with redundancy at component level is stochastically larger than that with redundancy at system level. In particular, in the setting of homogeneous components and redundancy lifetimes linked by an Archimedean survival copula, we develop sufficient conditions for the reversed hazard rate order, the hazard rate order and the likelihood ratio order between two system lifetimes, respectively. The present results substantially generalize some related results in the literature. Several numerical examples are presented to illustrate the findings as well.
In this paper, we define weighted failure rate and their means from the stand point of an application. We begin by emphasizing that the formation of n independent component series system having weighted failure rates with sum of weight functions being unity is same as a mixture of n distributions. We derive some parametric and non-parametric characterization results. We discuss on the form invariance property of baseline failure rate for a specific choice of weight function. Some bounds on means of aging functions are obtained. Here, we establish that weighted increasing failure rate average (IFRA) class is not closed under formation of coherent systems unlike the IFRA class. An interesting application of the present work is credited to the fact that the quantile version of means of failure rate is obtained as a special case of weighted means of failure rate.
The pth ($p\geq 1$) moment exponential stability, almost surely exponential stability and stability in distribution for stochastic McKean–Vlasov equation are derived based on some distribution-dependent Lyapunov function techniques.
A series of papers by Hickey (1982, 1983, 1984) presents a stochastic ordering based on randomness. This paper extends the results by introducing a novel methodology to derive models that preserve stochastic ordering based on randomness. We achieve this by presenting a new family of pseudometric spaces based on a majorization property. This class of pseudometrics provides a new methodology for deriving the randomness measure of a random variable. Using this, the paper introduces the Gini randomness measure and states its essential properties. We demonstrate that the proposed measure has certain advantages over entropy measures. The measure satisfies the value validity property, provides an adequate extension to continuous random variables, and is often more appropriate (based on sensitivity) than entropy in various scenarios.
Random bridges have gained significant attention in recent years due to their potential applications in various areas, particularly in information-based asset pricing models. This paper aims to explore the potential influence of the pinning point’s distribution on the memorylessness and stochastic dynamics of the bridge process. We introduce Lévy bridges with random length and random pinning points, and analyze their Markov property. Our study demonstrates that the Markov property of Lévy bridges depends on the nature of the distribution of their pinning points. The law of any random variables can be decomposed into singular continuous, discrete, and absolutely continuous parts with respect to the Lebesgue measure (Lebesgue’s decomposition theorem). We show that the Markov property holds when the pinning points’ law does not have an absolutely continuous part. Conversely, the Lévy bridge fails to exhibit Markovian behavior when the pinning point has an absolutely continuous part.
We propose a monotone approximation scheme for a class of fully nonlinear degenerate partial integro-differential equations which characterize nonlinear $\alpha$-stable Lévy processes under a sublinear expectation space with $\alpha\in(1,2)$. We further establish the error bounds for the monotone approximation scheme. This in turn yields an explicit Berry–Esseen bound and convergence rate for the $\alpha$-stable central limit theorem under sublinear expectation.
In this paper, we explore the applications of Tail Variance (TV) as a measure of tail riskiness and the confidence level of using Tail Conditional Expectation (TCE)-based risk capital. While TCE measures the expected loss of a risk that exceeds a certain threshold, TV measures the variability of risk along its tails. We first derive analytical formulas of TV and TCE for a large variety of probability distributions. These formulas are useful instruments for relevant research works on tail risk measures. We then propose a distribution-free approach utilizing TV to estimate the lower bounds of the confidence level of using TCE-based risk capital. In doing so, we introduce sharpened conditional probability inequalities, which halve the bounds of conventional Markov and Cantelli inequalities. Such an approach is easy to implement. We further investigate the characterization of tail risks by TV through an exploration of TV’s asymptotics. A distribution-free limit formula is derived for the asymptotics of TV. To further investigate the asymptotic properties, we consider two broad distribution families defined on tails, namely, the polynomial-tailed distributions and the exponential-tailed distributions. The two distribution families are found to exhibit an asymptotic equivalence between TV and the reciprocal square of the hazard rate. We also establish asymptotic relationships between TCE and VaR for the two families. Our asymptotic analysis contributes to the existing research by unifying the asymptotic expressions and the convergence rate of TV for Student-t distributions, exponential distributions, and normal distributions, which complements the discussion on the convergence rate of univariate cases in [28]. To show the usefulness of our results, we present two case studies based on real data from the industry. We first show how to use conditional inequalities to assess the confidence of using TCE-based risk capital for different types of insurance businesses. Then, for financial data, we provide alternative evidence for the relationship between the data frequency and the tail categorization by the asymptotics of TV.
We introduce a bivariate tempered space-fractional Poisson process (BTSFPP) by time-changing the bivariate Poisson process with an independent tempered $\alpha$-stable subordinator. We study its distributional properties and its connection to differential equations. The Lévy measure for the BTSFPP is also derived. A bivariate competing risks and shock model based on the BTSFPP for predicting the failure times of items that undergo two random shocks is also explored. The system is supposed to break when the sum of two types of shock reaches a certain random threshold. Various results related to reliability, such as reliability function, hazard rates, failure density, and the probability that failure occurs due to a certain type of shock, are studied. We show that for a general Lévy subordinator, the failure time of the system is exponentially distributed with mean depending on the Laplace exponent of the Lévy subordinator when the threshold has a geometric distribution. Some special cases and several typical examples are also demonstrated.
In this work, we consider two sets of dependent variables $\{X_{1},\ldots,X_{n}\}$ and $\{Y_{1},\ldots,Y_{n}\}$, where $X_{i}\sim EW(\alpha_{i},\lambda_{i},k_{i})$ and $Y_{i}\sim EW(\beta_{i},\mu_{i},l_{i})$, for $i=1,\ldots, n$, which are coupled by Archimedean copulas having different generators. We then establish different inequalities between two extremes, namely, $X_{1:n}$ and $Y_{1:n}$ and $X_{n:n}$ and $Y_{n:n}$, in terms of the usual stochastic, star, Lorenz, hazard rate, reversed hazard rate and dispersive orders. Several examples and counterexamples are presented for illustrating all the results established here. Some of the results here extend the existing results of [5] (Barmalzan, G., Ayat, S.M., Balakrishnan, N., & Roozegar, R. (2020). Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under Archimedean copula. Journal of Computational and Applied Mathematics380: Article No. 112965).
Qu, Dassios, and Zhao (2021) suggested an exact simulation method for tempered stable Ornstein–Uhlenbeck processes, but their algorithms contain some errors. This short note aims to correct their algorithms and conduct some numerical experiments.
In this paper, we study the functional given by the integral of the mean curvature of a convex set with Gaussian weight with Gaussian volume constraint. It was conjectured that the ball centred at the origin is the only minimizer of such a functional for certain values of the mass. We prove that this is the case in dimension 2 while in higher dimension the situation is different. In fact, for small values of mass, the ball centred at the origin is a local minimizer, while for larger values the ball is a maximizer among convex sets with a uniform bound on the curvature.
Let $\mathcal{C}$ denote the family of all coherent distributions on the unit square $[0,1]^2$, i.e. all those probability measures $\mu$ for which there exists a random vector $(X,Y)\sim \mu$, a pair $(\mathcal{G},\mathcal{H})$ of $\sigma$-fields, and an event E such that $X=\mathbb{P}(E\mid\mathcal{G})$, $Y=\mathbb{P}(E\mid\mathcal{H})$ almost surely. We examine the set $\mathrm{ext}(\mathcal{C})$ of extreme points of $\mathcal{C}$ and provide its general characterisation. Moreover, we establish several structural properties of finitely-supported elements of $\mathrm{ext}(\mathcal{C})$. We apply these results to obtain the asymptotic sharp bound $\lim_{\alpha \to \infty}\alpha\cdot(\sup_{(X,Y)\in \mathcal{C}}\mathbb{E}|X-Y|^{\alpha}) = {2}/{\mathrm{e}}$.
We study a skew Ornstein–Uhlenbeck process with zero being a sticky reflecting boundary, which is defined as the weak solution to a stochastic differential equation (SDE) system involving local time. The main results obtained include: (i) the existence and uniqueness of solutions to the SDE system, (ii) the scale function and speed measure, and (iii) the distributional properties regarding the transition density and the first hitting times. On the application side, we apply the process to interest rate modeling and obtain the explicit pricing formula for zero-coupon bonds. Numerical examples illustrate the impacts on bond yields of skewness and stickiness parameters.
Centrality measures aim to indicate who is important in a network. Various notions of ‘being important’ give rise to different centrality measures. In this paper, we study how important the central vertices are for the connectivity structure of the network, by investigating how the removal of the most central vertices affects the number of connected components and the size of the giant component. We use local convergence techniques to identify the limiting number of connected components for locally converging graphs and centrality measures that depend on the vertex’s neighbourhood. For the size of the giant, we prove a general upper bound. For the matching lower bound, we specialise to the case of degree centrality on one of the most popular models in network science, the configuration model, for which we show that removal of the highest-degree vertices destroys the giant most.
We show that an estimate by de la Peña, Ibragimov, and Jordan for ${\mathbb{E}}(X-c)^+$, with c a constant and X a random variable of which the mean, the variance, and $\mathbb{P}(X \leqslant c)$ are known, implies an estimate by Scarf on the infimum of ${\mathbb{E}}(X \wedge c)$ over the set of positive random variables X with fixed mean and variance. This also shows, as a consequence, that the former estimate implies an estimate by Lo on European option prices.
In this paper, we compare the entropy of the original distribution and its corresponding compound distribution. Several results are established based on convex order and relative log-concave order. The necessary and sufficient condition for a compound distribution to be log-concave is also discussed, including compound geometric distribution, compound negative binomial distribution and compound binomial distribution.
We obtain exact formulas for the cumulative distribution function of the variance-gamma distribution, as infinite series involving the modified Bessel function of the second kind and the modified Lommel function of the first kind. From these formulas, we deduce exact formulas for the cumulative distribution function of the product of two correlated zero-mean normal random variables.
It is proven that a conjecture of Tao (2010) holds true for log-concave random variables on the integers: For every $n \geq 1$, if $X_1,\ldots,X_n$ are i.i.d. integer-valued, log-concave random variables, then
as $H(X_1) \to \infty$, where $H(X_1)$ denotes the (discrete) Shannon entropy. The problem is reduced to the continuous setting by showing that if $U_1,\ldots,U_n$ are independent continuous uniforms on $(0,1)$, then
The switch process alternates independently between 1 and $-1$, with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.
There are some connections between aging notions, stochastic orders, and expected utilities. It is known that the DRHR (decreasing reversed hazard rate) aging notion can be characterized via the comparative statics result of risk aversion, and that the location-independent riskier order preserves monotonicity between risk premium and the Arrow–Pratt measure of risk aversion, and that the dispersive order preserves this monotonicity for the larger class of increasing utilities. Here, the aging notions ILR (increasing likelihood ratio), IFR (increasing failure rate), IGLR (increasing generalized likelihood ratio), and IGFR (increasing generalized failure rate) are characterized in terms of expected utilities. Based on these observations, we recover the closure properties of ILR, IFR, and DRHR under convolution, and of IGLR and IGFR under product, and investigate the closure properties of the dispersive order, location-independent riskier order, excess wealth order, the total time on test transform order under convolution, and the star order under product. We have some new findings.