We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions. In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints, then the model that maximizes entropy under these constraints is used for the inference. In this paper, we propose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the mean and a general index. We then present some statistical properties of the new distribution, including hazard rate function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the performance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to three real data sets and compare its relative performance with respect to the beta generalized Weibull family.
We consider the asset price as the weak solution to a stochastic differential equation driven by both a Brownian motion and the counting process martingale whose predictable compensator follows shot-noise and Hawkes processes. In this framework, we discuss the Esscher martingale measure where the conditions for its existence are detailed. This generalizes certain relationships not yet encountered in the literature.
We examine urn models under random replacement schemes, and the related distributions, by using generating functions. A fundamental isomorphism between urn models and a certain system of differential equations has previously been established. We study the joint distribution of the numbers of balls in the urn, and determined recurrence relations for the probability generating functions. The associated partial differential equation satisfied by the generating function is derived. We develop analytical methods for the study of urn models that can lead to perspectives on urn-related problems from analytic combinatorics. The results presented here provide a broader framework for the study of exactly solvable urns than the existing framework. Finally, we examine several applications and their numerical results in order to demonstrate how our theoretical results can be employed in the study of urn models.
Negative dependence of sequences of random variables is often an interesting characteristic of their distribution, as well as a useful tool for studying various asymptotic results, including central limit theorems, Poisson approximations, the rate of increase of the maximum, and more. In the study of probability models of tournaments, negative dependence of participants’ outcomes arises naturally, with application to various asymptotic results. In particular, the property of negative orthant dependence was proved in several articles for different tournament models, with a special proof for each model. In this note we unify these results by proving a stronger property, negative association, a generalization leading to a very simple proof. We also present a natural example of a knockout tournament where the scores are negatively orthant dependent but not negatively associated. The proof requires a new result on a preservation property of negative orthant dependence that is of independent interest.
Consider the coupon collector problem where each box of a brand of cereal contains a coupon and there are n different types of coupons. Suppose that the probability of a box containing a coupon of a specific type is $1/n$, and that we keep buying boxes until we collect at least m coupons of each type. For $k\geq m$ call a certain coupon a k-ton if we see it k times by the time we have seen m copies of all of the coupons. Here we determine the asymptotic distribution of the number of k-tons after we have collected m copies of each coupon for any k in a restricted range, given any fixed m. We also determine the asymptotic joint probability distribution over such values of k, and the total number of coupons collected.
We propose a stochastic model for the failure times of items subject to two external random shocks occurring as events in an underlying bivariate counting process. This is a special formulation of the competing risks model, which is of interest in reliability theory and survival analysis. Specifically, we assume that a system, or an item, fails when the sum of the two types of shock reaches a critical random threshold. In detail, the two kinds of shock occur according to a bivariate space-fractional Poisson process, which is a two-dimensional vector of independent homogeneous Poisson processes time-changed by an independent stable subordinator. Various results are given, such as analytic hazard rates, failure densities, the probability that the failure occurs due to a specific type of shock, and the survival function. Some special cases and ageing notions related to the NBU characterization are also considered. In this way we generalize certain results in the literature, which can be recovered when the underlying process reduces to the homogeneous Poisson process.
Layer reinsurance treaty is a common form obtained in the problem of optimal reinsurance design. In this paper, we study allocations of policy limits in layer reinsurance treaties with dependent risks. We investigate the effects of orderings and heterogeneity among policy limits on the expected utility functions of the terminal wealth from the viewpoint of risk-averse insurers faced with right tail weakly stochastic arrangement increasing losses. Orderings on optimal allocations are presented for normal layer reinsurance contracts under certain conditions. Parallel studies are also conducted for randomized layer reinsurance contracts. As a special case, the worst allocations of policy limits are also identified when the exact dependence structure among the losses is unknown. Numerical examples are presented to shed light on the theoretical findings.
We study large-deviation probabilities of Telecom processes appearing as limits in a critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu. We examine three different regimes of large deviations (LD) depending on the deviation level. A Telecom process
$(Y_t)_{t \ge 0}$
scales as
$t^{1/\gamma}$
, where t denotes time and
$\gamma\in(1,2)$
is the key parameter of Y. We must distinguish moderate LD
${\mathbb P}(Y_t\ge y_t)$
with
$t^{1/\gamma} \ll y_t \ll t$
, intermediate LD with
$ y_t \approx t$
, and ultralarge LD with
$ y_t \gg t$
. The results we obtain essentially depend on another parameter of Y, namely the resource distribution. We solve completely the cases of moderate and intermediate LD (the latter being the most technical one), whereas the ultralarge deviation asymptotics is found for the case of regularly varying distribution tails. In all the cases considered, the large-deviation level is essentially reached by the minimal necessary number of ‘service processes’.
In this short note we introduce two notions of dispersion-type variability orders, namely expected shortfall-dispersive (ES-dispersive) order and expectile-dispersive (ex-dispersive) order, which are defined by two classes of popular risk measures, the expected shortfall and the expectiles. These new orders can be used to compare the variability of two risk random variables. It is shown that either the ES-dispersive order or the ex-dispersive order is the same as the dilation order. This gives us some insight into parametric measures of variability induced by risk measures in the literature.
Let f be the density function associated to a matrix-exponential distribution of parameters
$(\boldsymbol{\alpha}, T,\boldsymbol{{s}})$
. By exponentially tilting f, we find a probabilistic interpretation which generalizes the one associated to phase-type distributions. More specifically, we show that for any sufficiently large
$\lambda\ge 0$
, the function
$x\mapsto \left(\int_0^\infty e^{-\lambda s}f(s)\textrm{d} s\right)^{-1}e^{-\lambda x}f(x)$
can be described in terms of a finite-state Markov jump process whose generator is tied to T. Finally, we show how to revert the exponential tilting in order to assign a probabilistic interpretation to f itself.
The paper proves transportation inequalities for probability measures on spheres for the Wasserstein metrics with respect to cost functions that are powers of the geodesic distance. Let $\mu$ be a probability measure on the sphere ${\bf S}^n$ of the form $d\mu =e^{-U(x)}{\rm d}x$ where ${\rm d}x$ is the rotation invariant probability measure, and $(n-1)I+{\hbox {Hess}}\,U\geq {\kappa _U}I$, where $\kappa _U>0$. Then any probability measure $\nu$ of finite relative entropy with respect to $\mu$ satisfies ${\hbox {Ent}}(\nu \mid \mu ) \geq (\kappa _U/2)W_2(\nu,\, \mu )^2$. The proof uses an explicit formula for the relative entropy which is also valid on connected and compact $C^\infty$ smooth Riemannian manifolds without boundary. A variation of this entropy formula gives the Lichnérowicz integral.
Gromov–Wasserstein distances were proposed a few years ago to compare distributions which do not lie in the same space. In particular, they offer an interesting alternative to the Wasserstein distances for comparing probability measures living on Euclidean spaces of different dimensions. We focus on the Gromov–Wasserstein distance with a ground cost defined as the squared Euclidean distance, and we study the form of the optimal plan between Gaussian distributions. We show that when the optimal plan is restricted to Gaussian distributions, the problem has a very simple linear solution, which is also a solution of the linear Gromov–Monge problem. We also study the problem without restriction on the optimal plan, and provide lower and upper bounds for the value of the Gromov–Wasserstein distance between Gaussian distributions.
Almost stochastic dominance has been receiving a great amount of attention in the financial and economic literatures. In this paper, we characterize the properties of almost first-order stochastic dominance (AFSD) via distorted expectations and investigate the conditions under which AFSD is preserved under a distortion transform. The main results are also applied to establish stochastic comparisons of order statistics and receiver operating characteristic curves via AFSD.
We show that load-sharing models (a very special class of multivariate probability models for nonnegative random variables) can be used to obtain basic results about a multivariate extension of stochastic precedence and related paradoxes. Such results can be applied in several different fields. In particular, applications of them can be developed in the context of paradoxes which arise in voting theory. Also, an application to the notion of probability signature may be of interest, in the field of systems reliability.
In this paper we define a family of preferential attachment models for random graphs with fitness in the following way: independently for each node, at each time step a random fitness is drawn according to the position of a moving average process with positive increments. We will define two regimes in which our graph reproduces some features of two well-known preferential attachment models: the Bianconi–Barabási and Barabási–Albert models. We will discuss a few conjectures on these models, including the convergence of the degree sequence and the appearance of Bose–Einstein condensation in the network when the drift of the fitness process has order comparable to the graph size.
We propose non-asymptotic controls of the cumulative distribution function
$\mathbb{P}(|X_{t}|\ge \varepsilon)$
, for any
$t>0$
,
$\varepsilon>0$
and any Lévy process X such that its Lévy density is bounded from above by the density of an
$\alpha$
-stable-type Lévy process in a neighborhood of the origin.
We consider residue expansions for survival and density/mass functions of first-passage distributions in finite-state semi-Markov processes (SMPs) in continuous and integer time. Conditions are given which guarantee that the residue expansions for these functions have a dominant exponential/geometric term. The key condition assumes that the relevant states for first passage contain an irreducible class, thus ensuring the same sort of dominant exponential/geometric terms as one gets for phase-type distributions in Markov processes. Essentially, the presence of an irreducible class along with some other conditions ensures that the boundary singularity b for the moment generating function (MGF) of the first-passage-time distribution is a simple pole. In the continuous-time setting we prove that b is a dominant pole, in that the MGF has no other pole on the vertical line
$\{\text{Re}(s)=b\}.$
In integer time we prove that b is dominant if all holding-time mass functions for the SMP are aperiodic and non-degenerate. The expansions and pole characterisations address first passage to a single new state or a subset of new states, and first return to the starting state. Numerical examples demonstrate that the residue expansions are considerably more accurate than saddlepoint approximations and can provide a substitute for exact computation above the 75th percentile.
The signature of a path can be described as its full non-commutative exponential. Following T. Lyons, we regard its expectation, the expected signature, as a path space analogue of the classical moment generating function. The logarithm thereof, taken in the tensor algebra, defines the signature cumulant. We establish a universal functional relation in a general semimartingale context. Our work exhibits the importance of Magnus expansions in the algorithmic problem of computing expected signature cumulants and further offers a far-reaching generalization of recent results on characteristic exponents dubbed diamond and cumulant expansions with motivations ranging from financial mathematics to statistical physics. From an affine semimartingale perspective, the functional relation may be interpreted as a type of generalized Riccati equation.
A continuum of stochastic dominance rules, also referred to as fractional stochastic dominance (SD), was introduced by Müller, Scarsini, Tsetlin, and Winkler (2017) to cover preferences from first- to second-order SD. Fractional SD can be used to explain many individual behaviors in economics. In this paper we introduce the concept of fractional pure SD, a special case of fractional SD. We investigate further properties of fractional SD, for example the generating processes of fractional pure SD via
$\gamma$
-transfers of probability, Yaari’s dual characterization by utilizing the special class of distortion functions, the separation theorem in terms of first-order SD and fractional pure SD, Strassen’s representation, and bivariate characterization. We also establish several closure properties of fractional SD under quantile truncation, under comonotonic sums, and under distortion, as well as its equivalence characterization. Examples of distributions ordered in the sense of fractional SD are provided.
This paper concentrates on the fundamental concepts of entropy, information and divergence to the case where the distribution function and the respective survival function play the central role in their definition. The main aim is to provide an overview of these three categories of measures of information and their cumulative and survival counterparts. It also aims to introduce and discuss Csiszár's type cumulative and survival divergences and the analogous Fisher's type information on the basis of cumulative and survival functions.