To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The asymptotic behaviour of the recursion is investigated; Yk describes the number of comparisons which have to be carried out to merge two sorted subsequences of length 2k–1 and Mk can be interpreted as the number of comparisons of ‘Simultaneous Merge–Sort'. The challenging problem in the analysis of the above recursion lies in the fact that it contains a maximum as well as a sum. This demands different ideal properties for the metric in the contraction method. By use of the weighted Kolmogorov metric it is shown that an exponential normalization provides the recursion's convergence. Furthermore, one can show that any sequence of linear normalizations of Mk must converge towards a constant if it converges in distribution at all.
In this paper we describe how the joint large deviation properties of traffic streams are altered when the traffic passes through a shared buffer according to a FCFS service policy with stochastic service capacity. We also consider the stationary case, proving large deviation principles for the state of the system in equilibrium and for departures from an equilibrium system.
Let (X, S) = {(Xn, Sn); n ≧0} be a Markov random walk with finite state space. For a ≦ 0 < b define the stopping times τ= inf {n:Sn > b} and T= inf{n:Sn∉(a, b)}. The diffusion approximations of a one-barrier probability P {τ < ∝ | Xo= i}, and a two-barrier probability P{ST ≧b | Xo = i} with correction terms are derived. Furthermore, to approximate the above ruin probabilities, the limiting distributions of overshoot for a driftless Markov random walk are involved.
We study the long-term behaviour of a sequence of multitype general stochastic epidemics, converging in probability to a deterministic spatial epidemic model, proposed by D. G. Kendall. More precisely, we use branching and deterministic approximations in order to study the asymptotic behaviour of the total size of the epidemics as the number of types and the number of individuals of each type both grow to infinity.
For autoregressive time series with positive innovations which either have heavy right or left tails, linear programming parameter estimates of the autoregressive coefficients have good rates of convergence. However, the asymptotic distribution of the estimators depends heavily on the distribution of the process and thus cannot be used for inference. A bootstrap procedure circumvents this difficulty. We verify the validity of the bootstrap and also give some general comments on the bootstrapping of heavy tailed phenomena.
A sequence of irreducible closed queueing networks is considered in this paper. We obtain that the queue length processes can be approximated by reflected Brownian motions. Using these approximations, we get rates of convergence of the distributions of queue lengths.
Assume a given sequence of events to be strongly mixing at a polynomial or exponential rate. We show that the conclusion of the second Borel-Cantelli lemma holds if the series of the probabilities of the events diverges at a certain rate depending on the mixing rate of the events. An application to necessary moment conditions for the strong law of large numbers is given.
We prove strong convergence of the proportions Un/Tn of balls in a multitype generalized Pólya urn model, using martingale arguments. The limit is characterized as a convex combination of left dominant eigenvectors of the replacement matrix R, with random Dirichlet coefficients.
The ‘scanning process' Z(t), t ∈ ℝk of the title is a Gaussian random field obtained by associating with Z(t) the value of a set-indexed Brownian motion on the translate t + A0 of some ‘scanning set' A0. We study the basic properties of the random field Z relating, for example, its continuity and other sample path properties to the geometrical properties of A0. We ask if the set A0 determines the scanning process, and investigate when, and how, it is possible to recover the structure of A0 from realisations of the sample paths of the random field Z.
The accuracy of the Normal or Poisson approximations can be significantly improved by adding part of an asymptotic expansion in the exponent. The signed-compound-Poisson measures obtained in this manner can be of the same structure as the Poisson distribution. For large deviations we prove that signed-compound-Poisson measures enlarge the zone of equivalence for tails.
A result for the propagation of chaos is obtained for a class of pure jump particle systems of two species with mean field interaction. This result leads to the corresponding result for particle systems with one species and the argument used is valid for particle systems with more than two species. The model is motivated by the study of the phenomenon of self-organization in biology, chemistry and physics, and the technical difficulty is the unboundedness of the jump rates.
We prove large deviation results for the random sum , , where are non-negative integer-valued random variables and are i.i.d. non-negative random variables with common distribution function F, independent of . Special attention is paid to the compound Poisson process and its ramifications. The right tail of the distribution function F is supposed to be of Pareto type (regularly or extended regularly varying). The large deviation results are applied to certain problems in insurance and finance which are related to large claims.
The Mellin-Stieltjes convolution and related decomposition of distributions in M(α) (the class of distributions μ on (0, ∞) with slowly varying αth truncated moments ) are investigated. Maller shows that if X and Y are independent non-negative random variables with distributions μ and v, respectively, and both μ and v are in D2, the domain attraction of Gaussian distribution, then the distribution of the product XY (that is, the Mellin-Stieltjes convolution μ ^ v of μ and v) also belongs to it. He conjectures that, conversely, if μ ∘ v belongs to D2, then both μ and v are in it. It is shown that this conjecture is not true: there exist distributions μ ∈ D2 and v μ ∈ D2 such that μ ^ v belongs to D2. Some subclasses of D2 are given with the property that if μ ^ v belongs to it, then both μ and v are in D2.
This paper establishes a compound Poisson limit theorem for the sum of a sequence of multi-state Markov chains. Our theorem generalizes an earlier one by Koopman for the two-state Markov chain. Moreover, a similar approach is used to derive a limit theorem for the sum of the k th-order two-state Markov chain.
For sequences of i.i.d. random variables whose common tail 1 – F is regularly varying at infinity wtih an unknown index –α < 0, it is well known that the Hill estimator is consistent for α–1 and usually asymptotically normally distributed. However, because the Hill estimator is a function of k = k(n), the number of upper order statistics used and which is only subject to the conditions k →∞, k/n → 0, its use in practice is problematic since there are few reliable guidelines about how to choose k. The purpose of this paper is to make the use of the Hill estimator more reliable through an averaging technique which reduces the asymptotic variance. As a direct result the range in which the smoothed estimator varies as a function of k decreases and the successful use of the esimator is made less dependent on the choice of k. A tail empirical process approach is used to prove the weak convergence of a process closely related to the Hill estimator. The smoothed version of the Hill estimator is a functional of the tail empirical process.
A random vibration model is investigated in this paper. The model is formulated as a cosine function with a constant frequency and a random walk phase. We show that this model is second-order stationary and can be rewritten as a vector-valued AR(1) model as well as a scalar ARMA(2, 1) model. The linear innovation sequence of the AR(1) model is shown to be a martingale difference sequence while the linear innovation sequence of the ARMA(2, 1) model is only an uncorrelated sequence. A non-linear predictor is derived from the AR(1) model while a linear predictor is derived from the ARMA(2, 1) model. We deduce that the non-linear predictor of this model has less mean square error than that of the linear predictor. This has significance, for example, for predicting seasonal phenomena with this model. In addition, the limit distributions of the sample mean, the finite Fourier transforms and the autocovariance functions are derived using a martingale approach. The limit distribution of autocovariance functions differs from the classical result given by Bartlett's formula.
In the first part of this paper a global Kushner–Clark theorem about the convergence of stochastic algorithms is proved: we show that, under some natural assumptions, one can ‘read' from the trajectories of its ODE whether or not an algorithm converges. The classical stochastic optimization results are included in this theorem. In the second part, the above smoothness assumption on the mean vector field of the algorithm is relaxed using a new approach based on a path-dependent Lyapounov functional. Several applications, for non-smooth mean vector fields and/or bounded Lyapounov function settings, are derived. Examples and simulations are provided that illustrate and enlighten the field of application of the theoretical results.
Processes that exhibit repeatability in their kth-order moments are frequently studied in signal analysis. Such repeatability can be conveniently expressed with the help of almost periodicity. In particular, almost periodically correlated (APC) processes play an important role in the analysis of repeatable signals. This paper presents a study of asymptotic distributions of the estimator of the spectral covariance function for APC processes. It is demonstrated that, for a large class of APC processes, the functional central limit theorem holds.
The time-dependent virtual waiting time in a M/G/1 queue converges to a proper limit when the traffic intensity is less than one. In this paper we give precise rates on the speed of this convergence when the service time distribution has a heavy regularly varying tail.
The result also applies to the classical ruin problem. We obtain the exact rate of convergence for the ruin probability after time t for the case where claims arrive according to a Poisson process and claim sizes are heavy tailed.
Our result supplements similar theorems on exponential convergence rates for relaxation times in queueing theory and ruin probabilities in risk theory.
Let θ (a) be the first time when the range (Rn; n ≧ 0) is equal to a, Rn being equal to the difference of the maximum and the minimum, taken at time n, of a simple random walk on ℤ. We compute the g.f. of θ (a); this allows us to compute the distributions of θ (a) and Rn. We also investigate the asymptotic behaviour of θ (n), n going to infinity.