We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The accuracy of the Normal or Poisson approximations can be significantly improved by adding part of an asymptotic expansion in the exponent. The signed-compound-Poisson measures obtained in this manner can be of the same structure as the Poisson distribution. For large deviations we prove that signed-compound-Poisson measures enlarge the zone of equivalence for tails.
A result for the propagation of chaos is obtained for a class of pure jump particle systems of two species with mean field interaction. This result leads to the corresponding result for particle systems with one species and the argument used is valid for particle systems with more than two species. The model is motivated by the study of the phenomenon of self-organization in biology, chemistry and physics, and the technical difficulty is the unboundedness of the jump rates.
We prove large deviation results for the random sum , , where are non-negative integer-valued random variables and are i.i.d. non-negative random variables with common distribution function F, independent of . Special attention is paid to the compound Poisson process and its ramifications. The right tail of the distribution function F is supposed to be of Pareto type (regularly or extended regularly varying). The large deviation results are applied to certain problems in insurance and finance which are related to large claims.
The Mellin-Stieltjes convolution and related decomposition of distributions in M(α) (the class of distributions μ on (0, ∞) with slowly varying αth truncated moments ) are investigated. Maller shows that if X and Y are independent non-negative random variables with distributions μ and v, respectively, and both μ and v are in D2, the domain attraction of Gaussian distribution, then the distribution of the product XY (that is, the Mellin-Stieltjes convolution μ ^ v of μ and v) also belongs to it. He conjectures that, conversely, if μ ∘ v belongs to D2, then both μ and v are in it. It is shown that this conjecture is not true: there exist distributions μ ∈ D2 and v μ ∈ D2 such that μ ^ v belongs to D2. Some subclasses of D2 are given with the property that if μ ^ v belongs to it, then both μ and v are in D2.
This paper establishes a compound Poisson limit theorem for the sum of a sequence of multi-state Markov chains. Our theorem generalizes an earlier one by Koopman for the two-state Markov chain. Moreover, a similar approach is used to derive a limit theorem for the sum of the k th-order two-state Markov chain.
For sequences of i.i.d. random variables whose common tail 1 – F is regularly varying at infinity wtih an unknown index –α < 0, it is well known that the Hill estimator is consistent for α–1 and usually asymptotically normally distributed. However, because the Hill estimator is a function of k = k(n), the number of upper order statistics used and which is only subject to the conditions k →∞, k/n → 0, its use in practice is problematic since there are few reliable guidelines about how to choose k. The purpose of this paper is to make the use of the Hill estimator more reliable through an averaging technique which reduces the asymptotic variance. As a direct result the range in which the smoothed estimator varies as a function of k decreases and the successful use of the esimator is made less dependent on the choice of k. A tail empirical process approach is used to prove the weak convergence of a process closely related to the Hill estimator. The smoothed version of the Hill estimator is a functional of the tail empirical process.
A random vibration model is investigated in this paper. The model is formulated as a cosine function with a constant frequency and a random walk phase. We show that this model is second-order stationary and can be rewritten as a vector-valued AR(1) model as well as a scalar ARMA(2, 1) model. The linear innovation sequence of the AR(1) model is shown to be a martingale difference sequence while the linear innovation sequence of the ARMA(2, 1) model is only an uncorrelated sequence. A non-linear predictor is derived from the AR(1) model while a linear predictor is derived from the ARMA(2, 1) model. We deduce that the non-linear predictor of this model has less mean square error than that of the linear predictor. This has significance, for example, for predicting seasonal phenomena with this model. In addition, the limit distributions of the sample mean, the finite Fourier transforms and the autocovariance functions are derived using a martingale approach. The limit distribution of autocovariance functions differs from the classical result given by Bartlett's formula.
In the first part of this paper a global Kushner–Clark theorem about the convergence of stochastic algorithms is proved: we show that, under some natural assumptions, one can ‘read' from the trajectories of its ODE whether or not an algorithm converges. The classical stochastic optimization results are included in this theorem. In the second part, the above smoothness assumption on the mean vector field of the algorithm is relaxed using a new approach based on a path-dependent Lyapounov functional. Several applications, for non-smooth mean vector fields and/or bounded Lyapounov function settings, are derived. Examples and simulations are provided that illustrate and enlighten the field of application of the theoretical results.
Processes that exhibit repeatability in their kth-order moments are frequently studied in signal analysis. Such repeatability can be conveniently expressed with the help of almost periodicity. In particular, almost periodically correlated (APC) processes play an important role in the analysis of repeatable signals. This paper presents a study of asymptotic distributions of the estimator of the spectral covariance function for APC processes. It is demonstrated that, for a large class of APC processes, the functional central limit theorem holds.
The time-dependent virtual waiting time in a M/G/1 queue converges to a proper limit when the traffic intensity is less than one. In this paper we give precise rates on the speed of this convergence when the service time distribution has a heavy regularly varying tail.
The result also applies to the classical ruin problem. We obtain the exact rate of convergence for the ruin probability after time t for the case where claims arrive according to a Poisson process and claim sizes are heavy tailed.
Our result supplements similar theorems on exponential convergence rates for relaxation times in queueing theory and ruin probabilities in risk theory.
Let θ (a) be the first time when the range (Rn; n ≧ 0) is equal to a, Rn being equal to the difference of the maximum and the minimum, taken at time n, of a simple random walk on ℤ. We compute the g.f. of θ (a); this allows us to compute the distributions of θ (a) and Rn. We also investigate the asymptotic behaviour of θ (n), n going to infinity.
In phylogenetic analysis it is useful to study the distribution of the parsimony length of a tree under the null model, by which the leaves are independently assigned letters according to prescribed probabilities. Except in one special case, this distribution is difficult to describe exactly. Here we analyze this distribution by providing a recursive and readily computable description, establishing large deviation bounds for the parsimony length of a fixed tree on a single site and for the minimum length (maximum parsimony) tree over several sites. We also show that, under very general conditions, the former distribution converges asymptotically to the normal, thereby settling a recent conjecture. Furthermore, we show how the mean and variance of this distribution can be efficiently calculated. The proof of normality requires a number of new and recent results, as the parsimony length is not directly expressible as a sum of independent random variables, and so normality does not follow immediately from a standard central limit theorem.
It is known that a generalized open Jackson queueing network after appropriate scaling (in both time and space) converges almost surely to a fluid network under the uniform topology. Under the same topology, we show that the distance between the scaled queue length process of the queueing network and the fluid level process of the corresponding fluid network converges to zero in probability at an exponential rate.
As a model for an ATM switch we consider the overflow frequency of a queue that is served at a constant rate and in which the arrival process is the superposition of N traffic streams. We consider an asymptotic as N → ∞ in which the service rate Nc and buffer size Nb also increase linearly in N. In this regime, the frequency of buffer overflow is approximately exp(–NI(c, b)), where I(c, b) is given by the solution to an optimization problem posed in terms of time-dependent logarithmic moment generating functions. Experimental results for Gaussian and Markov modulated fluid source models show that this asymptotic provides a better estimate of the frequency of buffer overflow than ones based on large buffer asymptotics.
We study a model of a stochastic transportation system introduced by Crane. By adapting constructions of multidimensional reflected Brownian motion (RBM) that have since been developed for feedforward queueing networks, we generalize Crane's original functional central limit theorem results to a full vector setting, giving an explicit development for the case in which all terminals in the model experience heavy traffic conditions. We investigate product form conditions for the stationary distribution of our resulting RBM limit, and contrast our results for transportation networks with those for traditional queueing network models.
We analyse the queue QL at a multiplexer with L sources which may display long-range dependence. This includes, for example, sources modelled by fractional Brownian motion (FBM). The workload processes W due to each source are assumed to have large deviation properties of the form P[Wt/a(t) > x] ≈ exp[– v(t)K(x)] for appropriate scaling functions a and v, and rate-function K. Under very general conditions limL→xL–1 log P[QL > Lb] = – I(b), provided the offered load is held constant, where the shape function I is expressed in terms of the cumulant generating functions of the input traffic. For power-law scalings v(t) = tv, a(t) = ta (such as occur in FBM) we analyse the asymptotics of the shape function limb→xb–u/a(I(b) – δbv/a) = vu for some exponent u and constant v depending on the sources. This demonstrates the economies of scale available though the multiplexing of a large number of such sources, by comparison with a simple approximation P[QL > Lb] ≈ exp[−δLbv/a] based on the asymptotic decay rate δ alone. We apply this formula to Gaussian processes, in particular FBM, both alone, and also perturbed by an Ornstein–Uhlenbeck process. This demonstrates a richer potential structure than occurs for sources with linear large deviation scalings.
The distributions of nearest neighbour random walks on hypercubes in continuous time t 0 can be expressed in terms of binomial distributions; their limit behaviour for t, N → ∞ is well-known. We study here these random walks in discrete time and derive explicit bounds for the deviation of their distribution from their counterparts in continuous time with respect to the total variation norm. Our results lead to a recent asymptotic result of Diaconis, Graham and Morrison for the deviation from uniformity for N →∞. Our proofs use Krawtchouk polynomials and a version of the Diaconis–Shahshahani upper bound lemma. We also apply our methods to certain birth-and-death random walks associated with Krawtchouk polynomials.
In this paper, transient characteristics related to excursions of the occupation process of M/M/∞ queues are studied, when the excursion level is large and close to the mean offered load. We show that the classical diffusion approximation by an Ornstein–Uhlenbeck (OU) process captures well the average values of the transient variables considered, while the asymptotic distributions of these variables depart from those corresponding to the OU process. They exhibit, however, equivalent tail behaviour at infinity and numerical evidence shows that they are amazingly close to each other over the whole half-line.
We explore a dynamic approach to the problems of call admission and resource allocation for communication networks with connections that are differentiated by their quality of service requirements. In a dynamic approach, the amount of spare resources is estimated on-line based on feedbacks from the network's quality of service monitoring mechanism. The schemes we propose remove the dependence on accurate traffic models and thus simplify the tasks of supplying traffic statistics required of network users. In this paper we present two dynamic algorithms. The objective of these algorithms is to find the minimum bandwidth necessary to satisfy a cell loss probability constraint at an asynchronous transfer mode (ATM) switch. We show that in both schemes the bandwidth chosen by the algorithm approaches the optimal value almost surely. Furthermore, in the second scheme, which determines the point closest to the optimal bandwidth from a finite number of choices, the expected learning time is finite.
We consider the piecewise linear interpolation of Gaussian processes with continuous sample paths and stationary increments. The interrelation between the smoothness of the incremental variance function, d(t – s) = E[(X(t) – X(s))2], and the interpolation errors in mean square and uniform metrics is studied. The method of investigation can also be applied to the analysis of different methods of interpolation. It is based on some limit results for large deviations of a sequence of Gaussian non-stationary processes and related point processes. Non-stationarity in our case means mainly the local stationary condition for the sequence of correlation functions rn(t,s), n = 1, 2, ···, which has to hold uniformly in n. Finally, we discuss some examples and an application to the calculation of the distribution function of the maximum of a continuous Gaussian process with a given precision.