To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The DNA of higher animals replicates by an interesting mechanism. Enzymes recognise specific sites randomly scattered on the molecule and establish a bidirectional process of unwinding and replication from these sites. We investigate the limiting distribution of the completion time for this process by considering related coverage problems investigated by Janson (1983) and Hall (1988).
In the present paper we study the number of occurrences of non-overlapping success runs of length in a sequence of (not necessarily identical) Bernoulli trials arranged on a circle. An exact formula is given for the probability function, along with some sharp bounds which turn out to be very useful in establishing limiting (Poisson convergence) results. Certain applications to statistical run tests and reliability theory are also discussed.
Consider a sequence of possibly dependent random variables having the same marginal distribution F, whose tail 1−F is regularly varying at infinity with an unknown index − α < 0 which is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying mixing conditions, it is well known that Hill's estimator is consistent for α−1 and asymptotically normally distributed. The purpose of this paper is to emphasize the central role played by the tail empirical process for the problem of consistency. This approach allows us to easily prove Hill's estimator is consistent for infinite order moving averages of independent random variables. Our method also suffices to prove that, for the case of an AR model, the unknown index can be estimated using the residuals generated by the estimation of the autoregressive parameters.
Models for epidemic spread of infections are formulated by defining intensities for relevant counting processes. It is assumed that an infected individual passes through k stages of infectivity. The times spent in the different stages are random. Many well-known models for the spread of infections can be described in this way. The models can also be applied to describe other processes of epidemic character (such as models for rumour spreading). Asymptotic results are derived both for the size and for the duration of the epidemic.
Using an approach similar to that of Guivarc'h and Hardy (1988), we show that the local limit theorem holds for a Markov chain on a countable state space, with non-uniform ergodicity, when the recurrence is fast enough. We present a detailed study of a typical example, the reflected random walk on the positive half-line with negative mean and finite exponential moment. The results can be extended to some random walks on ℕ.
Non-parametric estimators of the distribution of the grain of the Boolean model are considered. The technique is based on the study of point processes of tangent points in different directions related to the Boolean model. Their second- and higher-order characteristics are used to estimate the mean body and the distribution of the typical grain. Central limit theorems for the improved estimator of the intensity and surface measures of the Boolean model are also proved.
We consider the composition of random i.i.d. affine maps of a Hilbert space to itself. We show convergence of the nth composition of these maps in the Wasserstein metric via a contraction argument. The contraction condition involves the operator norm of the expectation of a bilinear form. This is contrasted with the usual contraction condition of a negative Lyapunov exponent. Our condition is stronger and easier to check. In addition, our condition allows us to conclude convergence of second moments as well as convergence in distribution.
Consider the convex hull of n independent, identically distributed points in the plane. Functionals of interest are the number of vertices Nn, the perimeter Ln and the area An of the convex hull. We study the asymptotic behaviour of these three quantities when the points are standard normally distributed. In particular, we derive the variances of Nn, Ln and An for large n and prove a central limit theorem for each of these random variables. We enlarge on a method developed by Groeneboom (1988) for uniformly distributed points supported on a bounded planar region. The process of vertices of the convex hull is of central importance. Poisson approximation and martingale techniques are used.
The paper deals with large trunk line systems of the type appearing in telephone networks. There are many nodes or input sources, each pair of which is connected by a trunk line containing many individual circuits. Traffic arriving at either end of a trunk line wishes to communicate to the node at the other end. If the direct route is full, a rerouting might be attempted via an alternative route containing several trunks and connecting the same endpoints. The basic questions concern whether to reroute, and if so how to choose the alternative path. If the network is ‘large’ and fully connected, then the overflow traffic which is offered for rerouting to any trunk comes from many other trunks in the network with no one dominating. In this case one expects that some sort of averaging method can be used to approximate the rerouting requests and hence simplify the analysis. Essentially, the overflow traffic that a trunk offers the network for rerouting is in some average sense similar to the overflow traffic offered to that trunk. Indeed, a formalization of this idea involves the widely used (but generally heuristic) ‘fixed point' approximation method. One sets up the fixed point equations for appropriate rerouting strategies and then solves them to obtain an approximation to the system loss. In this paper we work in the heavy traffic regime, where the external offered traffic to any trunk is close to the service capacity of that trunk. It is shown that, as the number of links and circuits within each link go to infinity and for a variety of rerouting strategies, the system can be represented by an averaged limit. This limit is a reflected diffusion of the McKean–Vlasov (propagation of chaos) type, where the driving terms depend on the mean values of the solution of the equation. The averages occur due to the symmetry of the network and the averaging effects of the many interactions. This provides a partial justification for the fixed point method. The concrete dynamical systems flavor of the approach and the representations of the limit processes provide a useful way of visualizing the system and promise to be useful for the development of numerical methods and further analysis.
This paper shows how to calculate solutions to Poisson's equation for the waiting time sequence of the recurrent M/G/l queue. The solutions are used to construct martingales that permit us to study additive functionals associated with the waiting time sequence. These martingales provide asymptotic expressions, for the mean of additive functionals, that reflect dependence on the initial state of the process. In addition, we show how to explicitly calculate the scaling constants that appear in the central limit theorems for additive functionals of the waiting time sequence.
At which (random) sample size will every population element have been drawn at least m times? This special coupon collector's problem is often referred to as the Dixie cup problem. Some asymptotic properties of the Dixie cup problem with unequal sampling probabilities are described.
We prove that the quasi-invariant measures associated to a Brownian motion with negative drift X form a one-parameter family. The minimal one is a probability measure inducing the transition density of a three-dimensional Bessel process, and it is shown that it is the density of the limit distribution limt→∞Px(X A | τ > t). It is also shown that the minimal quasi-invariant measure of infinite mass induces the density of the limit distribution ) which is the law of a Bessel process with drift.
A proposal is given for estimating the home range of an animal based on sequential sightings. We assume the given sightings are independent, identically distributed random vectors X1,· ··, Xn whose common distribution has compact support. If are the polar coordinates of the sightings, then is a sup-measure and corresponds to the right endpoint of the distribution . The corresponding upper semi-continuous function l(θ) is the boundary of the home range. We give a consistent estimator for the boundary l and under the assumption that the distribution of R1 given is in the domain of attraction of an extreme value distribution with bounded support, we are able to give an approximate confidence region.
We prove a functional law of large numbers and a functional central limit theorem for a controlled renewal process, that is, a point process which differs from an ordinary renewal process in that the ith interarrival time is scaled by a function of the number of previous i arrivals. The functional law of large numbers expresses the convergence of a sequence of suitably scaled controlled renewal processes to the solution of an ordinary differential equation. Likewise, the functional central limit theorem establishes that the error in the law of large numbers converges weakly to the solution of a stochastic differential equation. Our proofs are based on martingale and time-change arguments.
This paper is concerned with a model for the spread of an epidemic in a closed, homogeneously mixing population in which new infections occur at rate f(x, y) and removals occur at rate g(x, y), where x and y are the numbers of susceptible and infective individuals, respectively, and f and g are arbitrary but specified positive real-valued functions. Sequences of such epidemics, indexed by the initial number of susceptibles n, are considered and conditions are derived under which the epidemic processes converge almost surely to a birth and death process as n tends to infinity. Thus a threshold theorem for such an epidemic model is obtained. The results are extended to models which incorporate immigration and emigration of susceptibles. The theory is illustrated by several examples of models taken from the epidemic literature. Generalizations to multipopulation epidemics are discussed briefly.
By imbedding the multitype version of the standard epidemic model in a multiparameter process, we derive a functional limit theorem for the total cost of the epidemics.
In the theory of autoregressive model fitting it is of interest to know the asymptotic behaviour, for large sample size, of the coefficients fitted. A significant role is played in this connection by the moments of the norms of the inverse sample covariance matrices. We establish uniform boundedness results for these, first under generally weak conditions and then for the special case of (infinite order) processes. These in turn imply corresponding ergodic theorems for the matrices in question.
Consider a number of events in a probability space. Let X be a random variable that is the number of events that occur. Given some of the moments of the distribution of X, it is possible to obtain bounds on the probability that at least one event occurs. The best possible bounds are given here. If there are many equiprobable events that are d- wise independent, and d is even, then the probability that at least one event happens is at least 1 — O(µ–d/2), where μ = E(X).
Let Y1, Y2, · ·· be a stochastic process and M a positive real number. Define TM = inf{n | Yn > M} (TM = + ∞ if for n = 1, 2, ···)· We are interested in the probabilities P(TM <∞) and in particular in the case when these tend to zero exponentially fast when M tends to infinity. The techniques of large deviations theory are used to obtain conditions for this and to find out the rate of convergence. The main hypotheses required are given in terms of the generating functions associated with the process (Yn).
Let F be the gamma distribution function with parameters a > 0 and α > 0 and let Gs be the negative binomial distribution function with parameters α and a/s, s > 0. By combining both probabilistic and approximation-theoretic methods, we obtain sharp upper and lower bounds for . In particular, we show that the exact order of uniform convergence is s–p, where p = min(1, α). Various kinds of applications concerning charged multiplicity distributions, the Yule birth process and Bernstein-type operators are also given.