To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the limiting behaviour of large systems of two types of Brownian particles undergoing bisexual branching. Particles of each type generate individuals of both types, and the respective branching law is asymptotically critical for the two-dimensional system, while being subcritical for each individual population.
The main result of the paper is that the limiting behaviour of suitably scaled sums and differences of the two populations is given by a pair of measure and distribution valued processes which, together, determine the limit behaviours of the individual populations.
Our proofs are based on the martingale problem approach to general state space processes. The fact that our limit involves both measure and distribution valued processes requires the development of some new methodologies of independent interest.
Given a sequence of independent identically distributed random variables, we derive a moving-maximum sequence (with random translations). The extremal index of the derived sequence is computed and the limiting behaviour of clusters of high values is studied. We are then given two or more independent stationary sequences whose extremal indices are known. We derive a new stationary sequence by taking either a pointwise maximum or by a mixture of the original sequences. In each case, we compute the extremal index of the derived sequence.
Consider a stationary Markov chain with state space consisting of the ξ -letter alphabet set Λ= {a1, a2, ···, aξ }. We study the variables M=M(n, k) and N=N(n, k), defined, respectively, as the number of overlapping and non-overlapping occurrences of a fixed periodic k-letter word, and use the Stein–Chen method to obtain compound Poisson approximations for their distribution.
The study of exponential functionals of Brownian motion has recently attracted much attention, partly motivated by several problems in financial mathematics. Let be a linear Brownian motion starting from 0. Following Dufresne (1989), (1990), De Schepper and Goovaerts (1992) and De Schepper et al. (1992), we are interested in the process (for δ > 0), which stands for the discounted values of a continuous perpetuity payment. We characterize the upper class (in the sense of Paul Lévy) of X, as δ tends to zero, by an integral test. The law of the iterated logarithm is obtained as a straightforward consequence. The process exp(W(u))du is studied as well. The class of upper functions of Z is provided. An application to the lim inf behaviour of the winding clock of planar Brownian motion is presented.
Johnson–Mehl tessellations can be considered as the results of spatial birth–growth processes. It is interesting to know when such a birth–growth process is completed within a bounded region. This paper deals with the limiting distributions of the time of completion for various models of Johnson–Mehl tessellations in ℝd and k-dimensional sectional tessellations, where 1 ≦ k < d, by considering asymptotic coverage probabilities of the corresponding Boolean models. Random fractals as the results of birth–growth processes are also discussed in order to show that a birth–growth process does not necessarily lead to a Johnson–Mehl tessellation.
We extend large exceedence results for i.i.d. -valued random variables to a class of uniformly recurrent Markov-additive processes and stationary strong-mixing processes. As in the i.i.d. case, the results are proved via large deviations estimates.
We introduce a model for the healing process of a destroyed region and use some relations to the coverage models. The restoring model depends on the region which is hit n times at random. Each random part of the region which is destroyed is restored at a certain fixed speed, but the restoring process may start after a random delay. We focus mainly on the total healing time until the whole region is restored, and analyse its limit distribution as n tends to ∞. The dependence of this limit distribution on the different ingredients is of interest. We consider two cases with different geometrical influence. One case is restricted to a one-dimensional region, that means the circumference of a circle or the unit interval as region. The results follow from extreme value theory. We discuss also some particular cases and examples.
Let be a real-valued, homogeneous, and isotropic random field indexed in . When restricted to those indices with , the Euclidean length of , equal to r (a positive constant), then the random field resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Brown (1993)) on the sphere, define to be a realization of the random process and to be the cardinality of . Without specifying the dependence structure of nor the marginal distribution of the , conditions for asymptotic normality of the standardized sample mean, , are given. The conditions on and are motivated by the ideas and results for dependent stationary sequences.
Under the assumptions of the neutral infinite alleles model, K (the total number of alleles present in a sample) is sufficient for estimating θ (the mutation rate). This is a direct result of the Ewens sampling formula, which gives a consistent, asymptotically normal estimator for θ based on K. It is shown that the same estimator used to estimate θ under neutrality is consistent and asymptotically normal, even when the assumption of selective neutrality is violated.
We present a method of deriving the limiting distributions of the number of occurrences of success (S) runs of length k for all types of runs under the Markovian structure with stationary transition probabilities. In particular, we consider the following four bestknown types. 1. A string of S of exact length k preceded and followed by an F, except the first run which may not be preceded by an F, or the last run which may not be followed by an F. 2. A string of S of length k or more. 3. A string of S of exact length k, where recounting starts immediately after a run occurs. 4. A string of S of exact length k, allowing overlapping runs. It is shown that the limits are convolutions of two or more distributions with one of them being either Poisson or compound Poisson, depending on the type of runs in question. The completely stationary Markov case and the i.i.d. case are also treated.
We investigate the asymptotic sample path behaviour of a randomly perturbed discrete-time dynamical system. We consider the case where the trajectories of the non-perturbed dynamical system are attracted by a finite number of limit sets and characterize a case where this property remains valid for the perturbed dynamical system when the perturbation converges to zero. For this purpose, no further assumptions on the perturbation are needed and our main condition applies to the limit sets of the non-perturbed dynamical system. When the limit sets reduce to limit points we show that this main condition is more general than the usual assumption of the existence of a Lyapunov function for the non-perturbed dynamical system. An application to an epidemic model is given to illustrate our results.
It is shown by means of several examples that probability metrics are a useful tool to study the asymptotic behaviour of (stochastic) recursive algorithms. The basic idea of this approach is to find a ‘suitable' probability metric which yields contraction properties of the transformations describing the limits of the algorithm. In order to demonstrate the wide range of applicability of this contraction method we investigate examples from various fields, some of which have already been analysed in the literature.
Shot noise processes form an important class of stochastic processes modeling phenomena which occur as shocks to a system and with effects that diminish over time. In this paper we present extreme value results for two cases — a homogeneous Poisson process of shocks and a non-homogeneous Poisson process with periodic intensity function. Shocks occur with a random amplitude having either a gamma or Weibull density and dissipate via a compactly supported impulse response function. This work continues work of Hsing and Teugels (1989) and Doney and O'Brien (1991) to the case of random amplitudes.
Let ψ(u) be the ruin probability in a risk process with initial reserve u, Poisson arrival rate β, claim size distribution B and premium rate p(x) at level x of the reserve. Let y(x) be the non-zero solution of the local Lundberg equation . It is shown that is non-decreasing and that log ψ(u) ≈ –I(u) in a slow Markov walk limit. Though the results and conditions are of large deviations type, the proofs are elementary and utilize piecewise comparisons with standard risk processes with a constant p. Also simulation via importance sampling using local exponential change of measure defined in terms of the γ(x) is discussed and some numerical results are presented.
We consider the distribution of the free coordinates of a time-homogeneous Markov process at the time of its first passage into a prescribed stopping set. This calculation (for an uncontrolled process) is of interest because under some circumstances it enables one to calculate the optimal control for a related controlled process. Scaling assumptions are made which allow the application of large deviation techniques. However, the first-order evaluation obtained by these techniques is often too crude to be useful, and the second-order correction term must be calculated. An expression for this correction term as an integral over time is obtained in Equation (20). The integration can be performed in some cases to yield the conclusions of Theorems 1 and 2, expressed in Equations (7) and (9). Theorem 1 gives the probability density of the state vector (to the required degree of approximation) at a prescribed time for a class of processes we may reasonably term linear. Theorem 2 evaluates (without any assumption of linearity) the ratio of this density to the probability density of the coordinates under general stopping rules.
We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u1< u2< · ·· and d1d2< · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is
for a suitable R and some R–1-harmonic function f and R–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R–1µ = µQ).
The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.
We consider a multiserver queuing process specified by i.i.d. interarrival time, batch size and service time sequences. In the case that different servers have different service time distributions we say the system is heterogeneous. In this paper we establish conditions for the queuing process to be characterized as a geometrically Harris recurrent Markov chain, and we characterize the stationary probabilities of large queue lengths and waiting times. The queue length is asymptotically geometric and the waiting time is asymptotically exponential. Our analysis is a generalization of the well-known characterization of the GI/G/1 queue obtained using classical probabilistic techniques of exponential change of measure and renewal theory.
We continue our investigation of the batch arrival-heterogeneous multiserver queue begun in Part I. In a general setting we prove the positive Harris recurrence of the system, and with no additional conditions we prove logarithmic tail limits for the stationary queue length and waiting time distributions.
We present a stochastic model for the movement of a white blood cell both in uniform concentration of chemoattractant and in the presence of a chemoattractant gradient. It is assumed that the rotational velocity is proportional to the weighted difference of the occupied receptors in the two halves of the cell and that each of the receptors stays free or occupied for an exponential length of time. We define processes corresponding to a cell with 2nß + 1 receptors (receptor sites). In the case of constant concentration, we show that the limiting process for the rotational velocity is an Ornstein–Uhlenbeck process. Its drift coefficient depends on the parameters of the exponential waiting times and its diffusion coefficient depends in addition also on the weight function. In the inhomogeneous case, the velocity process has a diffusion limit with drift coefficient depending on the concentration gradient and diffusion coefficient depending on the concentration and the weight function.
We consider a discrete-time stochastically perturbed dynamical system on the Polish space given by the recurrence formula Xn = S(Xn–1, Yn), where Yn are i.i.d. random elements. We prove the existence of unique stationary measure and versions of classical limit theorems for the process (Xn).