To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Points are independently and uniformly distributed onto the unit interval. The first n—1 points subdivide the interval into n subintervals. For 1 we find a necessary and sufficient condition on {ln} for the events [Xn belongs to the ln th largest subinterval] to occur infinitely often or finitely often with probability 1. We also determine when the weak and strong laws of large numbers hold for the length of the ln th largest subinterval. The strong law of large numbers and the central limit theorem are shown to be valid for the number of times by time n the events [Xr belongs to lr th largest subinterval] occur when these events occur infinitely often.
Under appropriate long-range dependence conditions, it is well known that the joint distribution of the number of exceedances of several high levels is asymptotically compound Poisson. Here we investigate the structure of a cluster of exceedances for stationary sequences satisfying a suitable local dependence condition, under which it is only necessary to get certain limiting probabilities, easy to compute, in order to obtain limiting results for the highest order statistics, exceedance counts and upcrossing counts.
In this paper, we consider kth-order two-state Markov chains {Xi} with stationary transition probabilities. For k = 1, we construct in detail an upper bound for the total variation d(Sn, Y) = Σx |𝐏(Sn = x) − 𝐏(Y = x)|, where Sn = X1 + · ··+ Xn and Y is a compound Poisson random variable. We also show that, under certain conditions, d(Sn, Y) converges to 0 as n tends to ∞. For k = 2, the corresponding results are given without derivation. For general k ≧ 3, a conjecture is proposed.
It is well known that most commonly used discrete distributions fail to belong to the domain of maximal attraction for any extreme value distribution. Despite this negative finding, C. W. Anderson showed that for a class of discrete distributions including the negative binomial class, it is possible to asymptotically bound the distribution of the maximum. In this paper we extend Anderson's result to discrete-valued processes satisfying the usual mixing conditions for extreme value results for dependent stationary processes. We apply our result to obtain bounds for the distribution of the maximum based on negative binomial autoregressive processes introduced by E. McKenzie and Al-Osh and Alzaid. A simulation study illustrates the bounds for small sample sizes.
Let X1, X2, · ·· be independent and identically distributed random variables such that ΕΧ1 < 0 and P(X1 ≥ 0) ≥ 0. Fix M ≥ 0 and let T = inf {n: X1 + X2 + · ·· + Xn ≥ M} (T = +∞, if for every n = 1,2, ···). In this paper we consider the estimation of the level-crossing probabilities P(T <∞) and , by using Monte Carlo simulation and especially importance sampling techniques. When using importance sampling, precision and efficiency of the estimation depend crucially on the choice of the simulation distribution. For this choice we introduce a new criterion which is of the type of large deviations theory; consequently, the basic large deviations theory is the main mathematical tool of this paper. We allow a wide class of possible simulation distributions and, considering the case that M →∞, we prove asymptotic optimality results for the simulation of the probabilities P(T <∞) and . The paper ends with an example.
We generalize a two-type mutation process in which particles reproduce by binary fission, inheriting the parental type, but which can mutate with small probability during their lifetimes to the opposite type. The generalization allows an arbitrary offspring distribution. The branching process structure of this scheme is exploited to obtain a variety of limit theorems, some of which extend known results for the binary case. In particular, practically usable asymptotic normality results are obtained when the initial population size is large.
We consider an increasing supercritical branching process in a random environment and obtain bounds on the Laplace transform and distribution function of the limiting random variable. There are two possibilities that can be distinguished depending on the nature of the component distributions of the environment. If the minimum family size of each is 1, the growth will be as a power depending on a parameter α. If the minimum family sizes of some are greater than 1, it will be exponential, depending on a parameter γ. We obtain bounds on the distribution function analogous to those found for the simple Galton-Watson case. It is not possible to obtain exact estimates and we are only able to obtain bounds to within ε of the parameters.
Cottrell et al. (1983) have indicated how ideas from the large deviations theory lead to fast simulation schemes that estimate the mean time taken by the slotted ALOHA protocol to saturate starting empty. Such fast simulation schemes are particularly useful when the attempt probability is small. The remaining time to saturation when the protocol has been operating for a time is more accurately described by the quasi-stationary exit time from the stable regime. The purpose of this article is to prove that the ratio of the quasi-stationary exit time to the exit time starting empty approaches 1 as the attempt probability becomes small.
Let X(1) ≦ X(2) ≦ ·· ·≦ X(N(t)) be the order statistics of the first N(t) elements from a sequence of independent identically distributed random variables, where {N(t); t ≧ 0} is a renewal counting process independent of the sequence of X's. We give a complete description of the asymptotic distribution of sums made from the top kt extreme values, for any sequence kt such that kt → ∞, kt/t → 0 as t → ∞. We discuss applications to reinsurance policies based on large claims.
For linear-cost-adjusted and geometric-discounted infinite sequences of i.i.d. random variables, point process convergence results are proved as the cost or discounting effect diminishes. These process convergence results are combined with continuous-mapping principles to obtain results on joint convergence of suprema and threshold-stopped random variables, and last-exit times and locations. Applications are made to several classical optimal stopping problems in these settings.
This paper gives general conditions under which symmetric functionals of random partitions of the integer m converge in distribution as m → ∞. The main result is used to settle a conjecture of Donnelly et al. (1991) to the effect that the mean of the sum of the square roots of the relative sizes of the components of a random mapping of m integers converges to π/2 as m → ∞.
The problem of estimating the transfer function of a linear system, together with the spectral density of an additive disturbance, is considered. The set of models used consists of linear rational transfer functions and the spectral densities are estimated from a finite-order autoregressive disturbance description. The true system and disturbance spectrum are, however, not necessarily of finite order. We investigate the properties of the estimates obtained as the number of observations tends to ∞ at the same time as the model order employed tends to ∞. It is shown that the estimates are strongly consistent and asymptotically normal, and an expression for the asymptotic variances is also given. The variance of the transfer function estimate at a certain frequency is related to the signal/noise ratio at that frequency and the model orders used, as well as the number of observations. The variance of the noise spectral estimate relates in a similar way to the squared value of the true spectrum.
Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).
We extend the results on the extremal properties of chain-dependent sequences considered in Turkman and Walker (1983) by assuming conditions similar to those given by Leadbetter and Nandagopalan (1987) which permit clustering of high values.
The Voronoi tessellation generated by a Gibbs point process is considered. Using the algebraic formalism of polymer expansion, the limit theorem and the large deviation principle for the number of Voronoi vertices are proved.
Let {Xn, n = 0, 1, 2, ···} be a transient Markov chain which, when restricted to the state space 𝒩 + = {1, 2, ···}, is governed by an irreducible, aperiodic and strictly substochastic matrix 𝐏 = (pij), and let pij(n) = P ∈ Xn = j, Xk ∈ 𝒩+ for k = 0, 1, ···, n | X0 = i], i, j 𝒩 +. The prime concern of this paper is conditions for the existence of the limits, qij say, of as n →∞. If the distribution (qij) is called the quasi-stationary distribution of {Xn} and has considerable practical importance. It will be shown that, under some conditions, if a non-negative non-trivial vector x = (xi) satisfying rxT = xT𝐏 and exists, where r is the convergence norm of 𝐏, i.e. r = R–1 and and T denotes transpose, then it is unique, positive elementwise, and qij(n) necessarily converge to xj as n →∞. Unlike existing results in the literature, our results can be applied even to the R-null and R-transient cases. Finally, an application to a left-continuous random walk whose governing substochastic matrix is R-transient is discussed to demonstrate the usefulness of our results.
Let s1, …, sn be generated governed by an r-state irreducible aperiodic Markov chain. The partial sum process is determined by a realization of states with s0 = α and the real-valued i.i.d. bounded variables Xαß associated with the transitions si = α, si+1 = β. Assume Χ αβ has negative stationary mean. The explicit limit distribution of the maximal segmental sum is derived. Computational methods with potential applications to the analysis of random Markov-dependent letter sequences (e.g. DNA and protein sequences) are presented.
This paper studies computer simulation methods for estimating the sensitivities (gradient, Hessian etc.) of the expected steady-state performance of a queueing model with respect to the vector of parameters of the underlying distribution (an example is the gradient of the expected steady-state waiting time of a customer at a particular node in a queueing network with respect to its service rate). It is shown that such a sensitivity can be represented as the covariance between two processes, the standard output process (say the waiting time process) and what we call the score function process which is based on the score function. Simulation procedures based upon such representations are discussed, and in particular a control variate method is presented. The estimators and the score function process are then studied under heavy traffic conditions. The score function process, when properly normalized, is shown to have a heavy traffic limit involving a certain variant of two-dimensional Brownian motion for which we describe the stationary distribution. From this, heavy traffic (diffusion) approximations for the variance constants in the large sample theory can be computed and are used as a basis for comparing different simulation estimators. Finally, the theory is supported by numerical results.
Let UNn be a U-statistic based on a simple random sample of size n selected without replacement from a finite population of size N. Rates of convergence results in the strong law are obtained for UNn, which are similar to those known for classical U-statistics based on samples of independent and identically distributed (iid) random variables.
Let P be the probability distribution of a sample without replacement of size n from a finite population represented by the set N={1,2,…N}. For each r=0, 1, …, an approximation Pr is described such that the uniform norm ‖P − Pr‖ is of order (n2/N)r+1 if n2/N→0. The approximation Pr is a linear combination of uniform probability product-measures concentrated on certain subspaces of the sample space Nn.