We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Rates of convergence to normality of O(N-½) are obtained for a standardized sum of m random variables selected at random from a finite set of N random variables in two cases. In the first case, the sum is randomly normed and the variables are not restricted to being independent. The second case is an alternative proof of a result due to von Bahr, which deals with independent variables. Both results derive from a rate obtained by Höglund in the case of sampling from a finite population.
Point-process and other techniques are used to make a comprehensive investigation of the almost-sure behaviour of partial maxima (the rth largest among a sample of n i.i.d. random variables), partial record values and differences and quotients involving them. In particular, we obtain characterizations of such asymptotic properties as a.s. for some finite constant c, or a.s. for some constant c in [0,∞], which tell us, in various ways, how quickly the sequences increase. These characterizations take the form of integral conditions on the tail of F, which furthermore characterize such properties as stability and relative stability of the sequence of maxima. We also develop their relation to the large-sample behaviour of trimmed sums, and discuss some statistical applications.
A new construction of the Gaussian distribution is introduced and proven. The procedure consists of using fractal interpolating functions, with graphs having increasing fractal dimensions, to transform arbitrary continuous probability measures defined over a closed interval. Specifically, let X be any probability measure on the closed interval I with a continuous cumulative distribution. And let fΘ,D:I → R be a deterministic continuous fractal interpolating function, as introduced by Barnsley (1986), with parameters Θ and fractal dimension for its graph D. Then, the derived measure Y = fΘ,D(X) tends to a Gaussian for all parameters Θ such that D → 2, for all X. This result illustrates that plane-filling fractal interpolating functions are ‘intrinsically Gaussian'. It explains that close approximations to the Gaussian may be obtained transforming any continuous probability measure via a single nearly-plane filling fractal interpolator.
Let X1, X2, ·· ·be stationary normal random variables with ρn = cov(X0, Xn). The asymptotic joint distribution of and is derived under the condition ρn log n → γ [0,∞). It is seen that the two statistics are asymptotically independent only if γ = 0.
Motivated by a statistical application, we consider continuum percolation in two or more dimensions, restricted to a large finite box, when above the critical point. We derive surface order large deviation estimates for the volume of the largest cluster and for its intersection with the boundary of the box. We also give some natural extensions to known, analogous results on lattice percolation.
In this paper we consider improvements in the rate of approximation for the distribution of sums of independent Bernoulli random variables via convolutions of Poisson measures with signed measures of specific type. As a special case, the distribution of the number of records in an i.i.d. sequence of length n is investigated. For this particular example, it is shown that the usual rate of Poisson approximation of O(1/log n) can be lowered to O(1/n2). The general case is discussed in terms of operator semigroups.
We derive upper bounds for the total variation distance, d, between the distributions of two random sums of non-negative integer-valued random variables. The main results are then applied to some important random sums, including cluster binomial and cluster multinomial distributions, to obtain bounds on approximating them to suitable Poisson or compound Poisson distributions. These bounds are generally better than the known results on Poisson and compound Poisson approximations. We also obtain a lower bound for d and illustrate it with an example.
In the Bayesian estimation of higher-order Markov transition functions on finite state spaces, a prior distribution may assign positive probability to arbitrarily high orders. If there are n observations available, we show (for natural priors) that, with probability one, as n → ∞ the Bayesian posterior distribution ‘discriminates accurately' for orders up to β log n, if β is smaller than an explicitly determined β0. This means that the ‘large deviations' of the posterior are controlled by the relative entropies of the true transition function with respect to all others, much as the large deviations of the empirical distributions are governed by their relative entropies with respect to the true transition function. An example shows that the result can fail even for orders β log n if β is large.
We investigate the asymptotic behaviour of the distribution of the number of comparisons needed by a quicksort-style selection algorithm that finds the lth smallest in a set of n numbers. Letting n tend to infinity and considering the values l = 1, ···,n simultaneously we obtain a limiting stochastic process. This process admits various interpretations: it arises in connection with a representation of real numbers induced by nested random partitions and also in connection with expected path lengths of a random walk in a random environment on a binary tree.
Grenander et al. (1991) proposed a conditional cyclic Gaussian Markov random field model for the edges of a closed outline in the plane. In this paper the model is recast as an improper cyclic Gaussian Markov random field for the vertices. The limiting behaviour of this model when the vertices become closely spaced is also described and in particular its relationship with the theory of ‘snakes' (Kass et al. 1987) is established. Applications are given in Grenander et al. (1991), Mardia et al. (1991) and Kent et al. (1992).
Stein's method is used to obtain two theorems on multivariate normal approximation. Our main theorem, Theorem 1.2, provides a bound on the distance to normality for any non-negative random vector. Theorem 1.2 requires multivariate size bias coupling, which we discuss in studying the approximation of distributions of sums of dependent random vectors. In the univariate case, we briefly illustrate this approach for certain sums of nonlinear functions of multivariate normal variables. As a second illustration, we show that the multivariate distribution counting the number of vertices with given degrees in certain random graphs is asymptotically multivariate normal and obtain a bound on the rate of convergence. Both examples demonstrate that this approach may be suitable for situations involving non-local dependence. We also present Theorem 1.4 for sums of vectors having a local type of dependence. We apply this theorem to obtain a multivariate normal approximation for the distribution of the random p-vector, which counts the number of edges in a fixed graph both of whose vertices have the same given color when each vertex is colored by one of p colors independently. All normal approximation results presented here do not require an ordering of the summands related to the dependence structure. This is in contrast to hypotheses of classical central limit theorems and examples, which involve for example, martingale, Markov chain or various mixing assumptions.
We study the limiting behaviour of large systems of two types of Brownian particles undergoing bisexual branching. Particles of each type generate individuals of both types, and the respective branching law is asymptotically critical for the two-dimensional system, while being subcritical for each individual population.
The main result of the paper is that the limiting behaviour of suitably scaled sums and differences of the two populations is given by a pair of measure and distribution valued processes which, together, determine the limit behaviours of the individual populations.
Our proofs are based on the martingale problem approach to general state space processes. The fact that our limit involves both measure and distribution valued processes requires the development of some new methodologies of independent interest.
Given a sequence of independent identically distributed random variables, we derive a moving-maximum sequence (with random translations). The extremal index of the derived sequence is computed and the limiting behaviour of clusters of high values is studied. We are then given two or more independent stationary sequences whose extremal indices are known. We derive a new stationary sequence by taking either a pointwise maximum or by a mixture of the original sequences. In each case, we compute the extremal index of the derived sequence.
Consider a stationary Markov chain with state space consisting of the ξ -letter alphabet set Λ= {a1, a2, ···, aξ }. We study the variables M=M(n, k) and N=N(n, k), defined, respectively, as the number of overlapping and non-overlapping occurrences of a fixed periodic k-letter word, and use the Stein–Chen method to obtain compound Poisson approximations for their distribution.
The study of exponential functionals of Brownian motion has recently attracted much attention, partly motivated by several problems in financial mathematics. Let be a linear Brownian motion starting from 0. Following Dufresne (1989), (1990), De Schepper and Goovaerts (1992) and De Schepper et al. (1992), we are interested in the process (for δ > 0), which stands for the discounted values of a continuous perpetuity payment. We characterize the upper class (in the sense of Paul Lévy) of X, as δ tends to zero, by an integral test. The law of the iterated logarithm is obtained as a straightforward consequence. The process exp(W(u))du is studied as well. The class of upper functions of Z is provided. An application to the lim inf behaviour of the winding clock of planar Brownian motion is presented.
Johnson–Mehl tessellations can be considered as the results of spatial birth–growth processes. It is interesting to know when such a birth–growth process is completed within a bounded region. This paper deals with the limiting distributions of the time of completion for various models of Johnson–Mehl tessellations in ℝd and k-dimensional sectional tessellations, where 1 ≦ k < d, by considering asymptotic coverage probabilities of the corresponding Boolean models. Random fractals as the results of birth–growth processes are also discussed in order to show that a birth–growth process does not necessarily lead to a Johnson–Mehl tessellation.
We extend large exceedence results for i.i.d. -valued random variables to a class of uniformly recurrent Markov-additive processes and stationary strong-mixing processes. As in the i.i.d. case, the results are proved via large deviations estimates.
We introduce a model for the healing process of a destroyed region and use some relations to the coverage models. The restoring model depends on the region which is hit n times at random. Each random part of the region which is destroyed is restored at a certain fixed speed, but the restoring process may start after a random delay. We focus mainly on the total healing time until the whole region is restored, and analyse its limit distribution as n tends to ∞. The dependence of this limit distribution on the different ingredients is of interest. We consider two cases with different geometrical influence. One case is restricted to a one-dimensional region, that means the circumference of a circle or the unit interval as region. The results follow from extreme value theory. We discuss also some particular cases and examples.
Let be a real-valued, homogeneous, and isotropic random field indexed in . When restricted to those indices with , the Euclidean length of , equal to r (a positive constant), then the random field resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Brown (1993)) on the sphere, define to be a realization of the random process and to be the cardinality of . Without specifying the dependence structure of nor the marginal distribution of the , conditions for asymptotic normality of the standardized sample mean, , are given. The conditions on and are motivated by the ideas and results for dependent stationary sequences.
Under the assumptions of the neutral infinite alleles model, K (the total number of alleles present in a sample) is sufficient for estimating θ (the mutation rate). This is a direct result of the Ewens sampling formula, which gives a consistent, asymptotically normal estimator for θ based on K. It is shown that the same estimator used to estimate θ under neutrality is consistent and asymptotically normal, even when the assumption of selective neutrality is violated.