To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove some limit theorems for contiunous time and state branching processes. The non-degenerate limit laws are obtained in critical and non-critical cases by conditioning or introducing immigration processes. The limit laws in non-critical cases are characterized in terms of the cononical measure of the cumulant semigroup. The proofs are based on estimates of the cumulant semigroup derived from the forward and backward equations, which are easier than the proffs in the classical setting.
We prove a central limit theorem for the super-Brownian motion with immigration governed by another super-Brownian. The limit theorem leads to Gaussian random fields in dimensions d ≥ 3. For d = 3 the field is spatially uniform; for d ≥ 5 its covariance is given by the potential operator of the underlying Brownian motion; and for d = 4 it involves a mixture of the two kinds of fluctuations.
Let {Xn, n ≥ 0} be a stationary Gaussian sequence of standard normal random variables with covariance function r(n) = EX0Xn. Let Under some mild regularity conditions on r(n) and the condition that r(n)lnn = o(1) or (r(n)lnn)−1 = O(1), the asymptotic distribution of is obtained. Continuous-time results are also presented as well as a tube formula tail area approximation to the joint distribution of the sum and maximum.
Let Xi : i ≥ 1 be i.i.d. points in ℝd, d ≥ 2, and let Tn be a minimal spanning tree on X1,…,Xn. Let L(X1,…,Xn) be the length of Tn and for each strictly positive integer α let N(X1,…,Xn;α) be the number of vertices of degree α in Tn. If the common distribution satisfies certain regularity conditions, then we prove central limit theorems for L(X1,…,Xn) and N(X1,…,Xn;α). We also study the rate of convergence for EL(X1,…,Xn).
In the setting of incomplete markets, this paper presents a general result of convergence for derivative assets prices. It is proved that the minimal martingale measure first introduced by Föllmer and Schweizer is a convenient tool for the stability under convergence. This extends previous well-known results when the markets are complete both in discrete time and continuous time. Taking into account the structure of stock prices, a mild assumption is made. It implies the joint convergence of the sequences of stock prices and of the Radon-Nikodym derivative of the minimal measure. The convergence of the derivatives prices follows.
This property is illustrated in the main classes of financial market models.
In a cubic multigraph certain restrictions on the paths are made to define what is called a railway. On the tracks in the railway (edges in the multigraph) an equivalence relation is defined. The number of equivalence classes induced by this relation is investigated for a random railway achieved from a random cubic multigraph, and the asymptotic distribution of this number is derived as the number of vertices tends to infinity.
Consider the basic location problem in which k locations from among n given points X1,…,Xn are to be chosen so as to minimize the sum M(k; X1,…,Xn) of the distances of each point to the nearest location. It is assumed that no location can serve more than a fixed finite number D of points. When the Xi, i ≥ 1, are i.i.d. random variables with values in [0,1]d and when k = ⌈n/(D+1)⌉ we show that
where α := α(D,d) is a positive constant, f is the density of the absolutely continuous part of the law of X1, and c.c. denotes complete convergence.
By using Chibisov-O'Reilly type theorems for uniform empirical and quantile processes based on stationary observations, we establish a weak approximation theory for empirical Lorenz curves and their inverses used in economics. In particular, we obtain weak approximations for empirical Lorenz curves and their inverses also under the assumptions of mixing dependence, often used structures of dependence for observations.
Let {Yn | n=1,2,…} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n | Yn > M} (T = +∞ if Yn ≤ M for n=1,2,…). We are interested in the ruin probabilities for large M. Define the family of measures {PM | M > 0} by PM(B) = P(T/M ∊ B) for B ∊ ℬ (ℬ = Borel sets of ℝ). We prove that for a wide class of processes {Yn}, the family {PM} satisfies a large deviations principle. The rate function will correspond to the approximation P(T/M ≈ x) ≈ P(Y⌈xM⌉/M ≈ 1) for x > 0. We apply the result to a simulation problem.
This paper examines a problem of importance to the telecommunications industry. In the design of modern ATM switches, it is necessary to use simulation to estimate the probability that a queue within the switch exceeds a given large value. Since these are extremely small probabilities, importance sampling methods must be used. Here we obtain a change of measure for a broad class of models with direct applicability to ATM switches.
We consider a model with A independent sources of cells where each source is modeled by a Markov renewal point process with batch arrivals. We do not assume the sources are necessarily identically distributed, nor that batch sizes are independent of the state of the Markov process. These arrivals join a queue served by multiple independent servers, each with service times also modeled as a Markov renewal process. We only discuss a time-slotted system. The queue is viewed as the additive component of a Markov additive chain subject to the constraint that the additive component remains non-negative. We apply the theory in McDonald (1999) to obtain the asymptotics of the tail of the distribution of the queue size in steady state plus the asymptotics of the mean time between large deviations of the queue size.
The number Yn of offspring of the most prolific individual in the nth generation of a Bienaymé–Galton–Watson process is studied. The asymptotic behaviour of Yn as n → ∞ may be viewed as an extreme value problem for i.i.d. random variables with random sample size. Limit theorems for both Yn and EYn provided that the offspring mean is finite are obtained using some convergence results for branching processes as well as a transfer limit lemma for maxima. Subcritical, critical and supercritical branching processes are considered separately.
We establish the uniform almost sure convergence of the partitioning estimate, which is a histogram-like mean regression function estimate, under ergodic conditions for a stationary and unbounded process. The main application of our results concerns time series analysis and prediction in the Markov processes case.
In this paper, central limit theorems for multivariate semi-Markov sequences and processes are obtained, both as the number of jumps of the associated Markov chain tends to infinity and, if appropriate, as the time for which the process has been running tends to infinity. The theorems are widely applicable since many functions defined on Markov or semi-Markov processes can be analysed by exploiting appropriate embedded multivariate semi-Markov sequences. An application to a problem in ion channel modelling is described in detail. Other applications, including to multivariate stationary reward processes, counting processes associated with Markov renewal processes, the interpretation of Markov chain Monte Carlo runs and statistical inference on semi-Markov models are briefly outlined.
In this paper we consider limit theorems for a random walk in a random environment, (Xn). Known results (recurrence-transience criteria, law of large numbers) in the case of independent environments are naturally extended to the case where the environments are only supposed to be stationary and ergodic. Furthermore, if ‘the fluctuations of the random transition probabilities around are small’, we show that there exists an invariant probability measure for ‘the environments seen from the position of (Xn)’. In the case of uniquely ergodic (therefore non-independent) environments, this measure exists as soon as (Xn) is transient so that the ‘slow diffusion phenomenon’ does not appear as it does in the independent case. Thus, under regularity conditions, we prove that, in this case, the random walk satisfies a central limit theorem for any fixed environment.
The germ-grain model is defined as the union of independent identically distributed compact random sets (grains) shifted by points (germs) of a point process. The paper introduces a family of stationary random measures in ℝd generated by germ-grain models and defined by the sum of contributions of non-overlapping parts of the individual grains. The main result of the paper is the central limit theorem for these random measures, which holds for rather general independently marked germ-grain models, including those with non-Poisson distribution of germs and non-convex grains. It is shown that this construction of random measures includes those random measures obtained by positively extended intrinsic volumes. In the Poisson case it is possible to prove a central limit theorem under weaker assumptions by using approximations by m-dependent random fields. Applications to statistics of the Boolean model are also discussed. They include a standard way to derive limit theorems for estimators of the model parameters.
Well-known inequalities for the spectral gap of a discrete-time Markov chain, such as Poincaré's and Cheeger's inequalities, do not perform well if the transition graph of the Markov chain is strongly connected. For example in the case of nearest-neighbour random walk on the n-dimensional cube Poincaré's and Cheeger's inequalities are off by a factor n. Using a coupling technique and a contraction principle lower bounds on the spectral gap can be derived. Finally, we show that using the contraction principle yields a sharp estimate for nearest-neighbour random walk on the n-dimensional cube.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
For a large class of neutral population models the asymptotics of the ancestral structure of a sample of n individuals (or genes) is studied, if the total population size becomes large. Under certain conditions and under a well-known time-scaling, which can be expressed in terms of the coalescence probabilities, weak convergence in DE([0,∞)) to the coalescent holds. Further the convergence behaviour of the jump chain of the ancestral process is studied. The results are used to approximate probabilities which are of certain interest in applications, for example hitting probabilities.
Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y, as a fractional integral of Riemann-Liouville type applied to a more standard process X—one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X, we then establish the MDP for Y. Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y. In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.