We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define the extension of the so-called ‘martingales in the branching random walk’ in R or C to some Banach algebras B of infinite dimension and give conditions for their convergence, almost surely and in the Lp norm. This abstract approach gives conditions for the simultaneous convergence of uncountable families of such martingales constructed simultaneously in C, the idea being to consider such a family as a function-valued martingale in a Banach algebra of functions. The approach is an alternative to those of Biggins (1989), (1992) and Barral (2000), and it applies to a class of families to which the previous approach did not. We also give a result on the continuity of these multiplicative processes. Our results extend to a varying environment version of the usual construction: instead of attaching i.i.d. copies of a given random vector to the nodes of the tree ∪n≥0N+n, the distribution of the vector depends on the node in the multiplicative cascade. In this context, when B=R and in the nonnegative case, we generalize the measure on the boundary of the tree usually related to the construction; then we evaluate the dimension of this nonstatistically self-similar measure. In the self-similar case, our convergence results make it possible to simultaneously define uncountable families of such measures, and then to estimate their dimension simultaneously.
We consider a continuous-time Markov additive process (Jt,St) with (Jt) an irreducible Markov chain on E = {1,…,s}; it is known that (St/t) satisfies the large deviations principle as t → ∞. In this paper we present a variational formula H for the rate function κ∗ and, in some sense, we have a composition of two large deviations principles. Moreover, under suitable hypotheses, we can consider two other continuous-time Markov additive processes derived from (Jt,St): the averaged parameters model (Jt,St(A)) and the fluid model (Jt,St(F)). Then some results of convergence are presented and the variational formula H can be employed to show that, in some sense, the convergences for (Jt,St(A)) and (Jt,St(F)) are faster than the corresponding convergences for (Jt,St).
Products of independent identically distributed random stochastic 2 × 2 matrices are known to converge in distribution under a trivial condition. Rates for this convergence are estimated in terms of the minimal Lp-metrics and the Kolmogoroff metric and applications to convergence rates of related interval splitting procedures are discussed.
We study the last passage time and its asymptotic distribution for minimum contrast estimators defined through the minimization of a convex criterion function based on U-functionals. This includes cases of non-smooth estimators for vector valued parameters. We also derive a Bahadur-type representation and the law of iterated logarithms for such estimators.
In this paper we study random variables related to a shock reliability model. Our models can be used to study systems that fail when k consecutive shocks with critical magnitude (e.g. above or below a certain critical level) occur. We obtain properties of the distribution function of the random variables involved and we obtain their limit behaviour when k tends to infinity or when the probability of entering a critical set tends to zero. This model generalises the Poisson shock model.
Consider a sum ∑1NYi of random variables conditioned on a given value of the sum ∑1NXi of some other variables, where Xi and Yi are dependent but the pairs (Xi,Yi) form an i.i.d. sequence. We consider here the case when each Xi is discrete. We prove, for a triangular array ((Xni,Yni)) of such pairs satisfying certain conditions, both convergence of the distribution of the conditioned sum (after suitable normalization) to a normal distribution, and convergence of its moments. The results are motivated by an application to hashing with linear probing; we give also some other applications to occupancy problems, random forests, and branching processes.
Consider a renewal process. The renewal events partition the process into i.i.d. renewal cycles. Assume that on each cycle, a rare event called 'success’ can occur. Such successes lend themselves naturally to approximation by Poisson point processes. If each success occurs after a random delay, however, Poisson convergence may be relatively slow, because each success corresponds to a time interval, not a point. In 1996, Altschul and Gish proposed a finite-size correction to a particular approximation by a Poisson point process. Their correction is now used routinely (about once a second) when computers compare biological sequences, although it lacks a mathematical foundation. This paper generalizes their correction. For a single renewal process or several renewal processes operating in parallel, this paper gives an asymptotic expansion that contains in successive terms a Poisson point approximation, a generalization of the Altschul-Gish correction, and a correction term beyond that.
Let X = (X(t):t ≥ 0) be a Lévy process and X∊ the compensated sum of jumps not exceeding ∊ in absolute value, σ2(∊) = var(X∊(1)). In simulation, X - X∊ is easily generated as the sum of a Brownian term and a compound Poisson one, and we investigate here when X∊/σ(∊) can be approximated by another Brownian term. A necessary and sufficient condition in terms of σ(∊) is given, and it is shown that when the condition fails, the behaviour of X∊/σ(∊) can be quite intricate. This condition is also related to the decay of terms in series expansions. We further discuss error rates in terms of Berry-Esseen bounds and Edgeworth approximations.
Consider a sequence X1,…,Xn of independent random variables with the same continuous distribution and the event Xi-r+1 < ⋯ < Xi of the appearance of an increasing sequence with length r, for i=r,…,n. Denote by W the number of overlapping appearances of the above event in the sequence of n trials. In this work, we derive bounds for the total variation and Kolmogorov distances between the distribution of W and a suitable compound Poisson distribution. Via these bounds, an associated theorem concerning the limit distribution of W is obtained. Moreover, using the previous results we study the asymptotic behaviour of the length of the longest increasing sequence. Finally, we suggest a non-parametric test based on W for checking randomness against local increasing trend.
We study the genealogical structure of samples from a population for which any given generation is made up of direct descendants from several previous generations. These occur in nature when there are seed banks or egg banks allowing an individual to leave offspring several generations in the future. We show how this temporal structure in the reproduction mechanism causes a decrease in the coalescence rate. We also investigate the effects of age-dependent neutral mutations. Our main result gives weak convergence of the scaled ancestral process, with the usual diffusion scaling, to a coalescent process which is equivalent to a time-changed version of Kingman's coalescent.
Optical mapping is a new technique to generate restriction maps of DNA easily and quickly. DNA restriction maps can be aligned by comparing corresponding restriction fragment lengths. To relate, organize, and analyse these maps it is necessary to rapidly compare maps. The issue of the statistical significance of approximately matching maps then becomes central, as in BLAST with sequence scoring. In this paper, we study the approximation to the distribution of counts of matched regions of specified length when comparing two DNA restriction maps. Distributional results are given to enable us to compute p-values and hence to determine whether or not the two restriction maps are related. The key tool used is the Chen-Stein method of Poisson approximation. Certain open problems are described.
In this paper, we consider the stochastic sequence {Yt}t∊ℕ defined recursively by the linear relation Yt+1 = AtYt + Bt in a random environment which is described by the non-stationary process {(At, Bt)}t∊ℕ. We formulate sufficient conditions on the environment which ensure that the finite-dimensional distributions of {Yt}t∊ℕ converge weakly to the finite-dimensional distributions of a unique stationary process. If the driving sequence {(At, Bt)}t∊ℕ becomes stationary in the long run, then we can establish a global convergence result. This extends results of Brandt (1986) and Borovkov (1998) from the stationary to the non-stationary case.
We consider a stochastic model for the spread of an SIR (susceptible → infective → removed) epidemic among a closed, finite population that contains several types of individuals and is partitioned into households. The infection rate between two individuals depends on the types of the transmitting and receiving individuals and also on whether the infection is local (i.e., within a household) or global (i.e., between households). The exact distribution of the final outcome of the epidemic is outlined. A branching process approximation for the early stages of the epidemic is described and made fully rigorous, by considering a sequence of epidemics in which the number of households tends to infinity and using a coupling argument. This leads to a threshold theorem for the epidemic model. A central limit theorem for the final outcome of epidemics which take off is derived, by exploiting an embedding representation.
We consider a system where units having magnitudes arrive according to a nonhomogeneous Poisson process, remain there for a random period and then depart. Eventually, at any point in time only a portion of those units which have entered the system remain. Of interest are the finite time properties and limiting behaviors of the distribution of magnitudes among the units present in the system and among those which have departed from the system. We will derive limiting results for the empirical distribution of magnitudes among the active (departed) units. These results are also shown to extend to systems having stages or steps through which units must proceed. Examples are given to illustrate these results.
The multiplexing of variable bit rate traffic streams in a packet network gives rise to two types of queueing. On a small time-scale, the rates at which the sources send is more or less constant, but there is queueing due to simultaneous packet arrivals (packet-level effect). On a somewhat larger time-scale, queueing is the result of a relatively high number of sources sending at a rate that is higher than their average rate (burst-level effect). This paper explores these effects. In particular, we give asymptotics of the overflow probability in the combined packet/burst scale model. It is shown that there is a specific size of the buffer (i.e. the ‘critical buffer size’) below which packet-scale effects are dominant, and above which burst-scale effects essentially determine the performance—strikingly, there is a sharp demarcation: theso-called ‘phase transition’. The results are asymptotic in the number of sources n. We scale buffer space B and link rate C by n, to nb and nc, respectively; then we let n grow large. Applying large deviations theory we show that in this regime the overflow probability decays exponentially in the number of sources n. For small buffers the corresponding decay rate can be calculated explicitly, for large buffers we derive an asymptote (linear in b). The results for small and large buffers give rise to an approximation for the decay rate (with general b), as well as for the critical buffer size. A numerical example (multiplexing of voice streams) confirms the accuracy of these approximations.
A class of non-negative alternating regenerative processes is considered, where the process stays at zero random time (waiting period), then it jumps to a random positive level and hits zero after some random period (life period), depending on the evolution of the process. It is assumed that the waiting time and the lifetime belong to the domain of attraction of stable laws with parameters in the interval (½,1]. An integral representation for the distribution functions of the regenerative process is obtained, using the spent time distributions of the corresponding alternating renewal process. Given the asymptotic behaviour of the process in the regenerative cycle, different types of limiting distributions are proved, applying some new results for the corresponding renewal process and two limit theorems for the convergence in distribution.
Following Füredi and Komlós, we develop a graph theory method to study the high moments of large random matrices with independent entries. We apply this method to sparse N × N random matrices AN,p that have, on average, p non-zero elements per row. One of our results is related to the asymptotic behaviour of the spectral norm ∥AN,p∥ in the limit 1 ≪ p ≪ N. We show that the value pc = log N is the critical one for lim ∥AN,p/√p∥ to be bounded or not. We discuss relations of this result with the Erdős–Rényi limit theorem and properties of large random graphs. In the proof, the principal issue is that the averaged vertex degree of plane rooted trees of k edges remains bounded even when k → ∞. This observation implies fairly precise estimates for the moments of AN,p. They lead to certain generalizations of the results by Sinai and Soshnikov on the universality of local spectral statistics at the border of the limiting spectra of large random matrices.
A generalisation of the classical general stochastic epidemic within a closed, homogeneously mixing population is considered, in which the infectious periods of infectives follow i.i.d. random variables having an arbitrary but specified distribution. The asymptotic behaviour of the total size distribution for the epidemic as the initial numbers of susceptibles and infectives tend to infinity is investigated by generalising the construction of Sellke and reducing the problem to a boundary crossing problem for sums of independent random variables.
This paper studies the geometric convergence rate of a discrete renewal sequence to its limit. A general convergence rate is first derived from the hazard rates of the renewal lifetimes. This result is used to extract a good convergence rate when the lifetimes are ordered in the sense of new better than used or increasing hazard rate. A bound for the best possible geometric convergence rate is derived for lifetimes having a finite support. Examples demonstrating the utility and sharpness of the results are presented. Several of the examples study convergence rates for Markov chains.
Let {W(t), t ≥ 0} be a standard Brownian motion. For a positive integer m, define a Gaussian process Watanabe and Lachal gave some asymptotic properties of the process Xm(·), m ≥ 1. In this paper, we study the bounds of its moduli of continuity and large increments by establishing large deviation results.