We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Upper as well as lower bounds for both the large deviations and small deviations of several sup-norms associated with the displacements of a one-dimensional string driven by a Gaussian noise which is white in time and has general spatial covariance are developed.
It has been observed that in many practical situations randomly stopped products of random variables have power law distributions. In this note we show that, in order for such a product to have a power law distribution, the only random indices are the exponentially distributed ones. We also consider a more general problem, which is closely related to problems concerning transformation from the central limit theorem to heavy-tailed distributions.
In this paper we derive the distribution of the total downtime of a repairable system during a given time interval. We allow dependence of the failure time and the repair time. The results are presented in the form of Laplace transforms which can be inverted numerically. We also discuss asymptotic properties of the total downtime.
We discuss long-memory properties and the partial sums process of the AR(1) process {Xt, t ∈ 𝕫} with random coefficient {at, t ∈ 𝕫} taking independent values Aj ∈ [0,1] on consecutive intervals of a stationary renewal process with a power-law interrenewal distribution. In the case when the distribution of generic Aj has either an atom at the point a=1 or a beta-type probability density in a neighborhood of a=1, we show that the covariance function of {Xt} decays hyperbolically with exponent between 0 and 1, and that a suitably normalized partial sums process of {Xt} weakly converges to a stable Lévy process.
We investigate convex rearrangements, called convexifications for brevity, of stochastic processes over fixed time intervals and develop the corresponding asymptotic theory when the time intervals indefinitely expand. In particular, we obtain strong and weak limit theorems for these convexifications when the processes are Gaussian with stationary increments and then illustrate the results using fractional Brownian motion. As a theoretical basis for these investigations, we extend some known, and also obtain new, results concerning the large sample asymptotic theory for the empirical generalized Lorenz curves and the Vervaat process when observations are stationary and either short-range or long-range dependent.
The binary interval tree is a random structure that underlies interval division and parking problems. Five incomplete one-sided variants of binary interval trees are considered, providing additional flavors and variations on the main applications. The size of each variant is studied, and a Gaussian tendency is proved in each case via an analytic approach. Differential equations on half scale and delayed differential equations arise and can be solved asymptotically by local expansions and Tauberian theorems. Unlike the binary case, in an incomplete interval tree the size determines most other parameters of interest, such as the height or the internal path length.
We show how good multivariate Poisson mixtures can be approximated by multivariate Poisson distributions and related finite signed measures. Upper bounds for the total variation distance with applications to risk theory and generalized negative multinomial distributions are given. Furthermore, it turns out that the ideas used in this paper also lead to improvements in the Poisson approximation of generalized multinomial distributions.
Let T = (T1, T2,…)
be a sequence of real random variables with
∑j=1∞1|Tj|>0 <
∞ almost surely. We consider the following equation for distributions μ: W ≅ ∑j=1∞TjWj, where W, W1, W2,… have distribution μ and T, W1, W2,… are independent. We show that the representation of general solutions is a mixture of certain infinitely divisible distributions. This result can be applied to investigate the existence of symmetric solutions for Tj ≥ 0: essentially under the condition that E ∑j=1∞Tj2 log+Tj2 < ∞, the existence of nontrivial symmetric solutions is exactly determined, revealing a connection with the existence of positive solutions of a related fixed-point equation. Furthermore, we derive results about a special class of canonical symmetric solutions including statements about Lebesgue density and moments.
This work is devoted to asymptotic properties of singularly perturbed Markov chains in discrete time. The motivation stems from applications in discrete-time control and optimization problems, manufacturing and production planning, stochastic networks, and communication systems, in which finite-state Markov chains are used to model large-scale and complex systems. To reduce the complexity of the underlying system, the states in each recurrent class are aggregated into a single state. Although the aggregated process may not be Markovian, its continuous-time interpolation converges to a continuous-time Markov chain whose generator is a function determined by the invariant measures of the recurrent states. Sequences of occupation measures are defined. A mean square estimate on a sequence of unscaled occupation measures is obtained. Furthermore, it is proved that a suitably scaled sequence of occupation measures converges to a switching diffusion.
In this paper, we propose a customer-arrival-based insurance risk model, in which customers' potential claims are described as independent and identically distributed heavy-tailed random variables and premiums are the same for each policy. We obtain some precise large deviation results for the prospective-loss process under a mild assumption on the random index (in our case, the customer-arrival process), which is much weaker than that in the literature.
This paper studies path lengths in random binary search trees under the random permutation model. It is known that the total path length, when properly normalized, converges almost surely to a nondegenerate random variable Z. The limit distribution is commonly referred to as the ‘quicksort distribution’. For the class 𝒜m of finite binary trees with at most m nodes we partition the external nodes of the binary search tree according to the largest tree that each external node belongs to. Thus, the external path length is divided into parts, each part associated with a tree in 𝒜m. We show that the vector of these path lengths, after normalization, converges almost surely to a constant vector times Z.
The aim of this paper is to investigate discrete approximations of the exponential functional of Brownian motion (which plays an important role in Asian options of financial mathematics) with the help of simple, symmetric random walks. In some applications the discrete model could be even more natural than the continuous one. The properties of the discrete exponential functional are rather different from the continuous one: typically its distribution is singular with respect to Lebesgue measure, all of its positive integer moments are finite and they characterize the distribution. On the other hand, using suitable random walk approximations to Brownian motion, the resulting discrete exponential functionals converge almost surely to the exponential functional of Brownian motion; hence their limit distribution is the same as in the continuous case, namely that of the reciprocal of a gamma random variable, and so is absolutely continuous with respect to Lebesgue measure. In this way, we also give a new and elementary proof of an earlier result by Dufresne and Yor.
The aim of this paper is to study the distribution of colours, {Xn}, in a generalized Pólya urn model with L colours, an urn function and a random environment. In this setting, the number of actions to be taken can be greater than L, and the total number of balls added in each step can be random. The process {Xn} is expressed as a stochastic recurrent equation that fits a Robbins—Monro scheme. Since this process evolves in the (L—1)-simplex, the stability of the solutions of the ordinary differential equation associated with the Robbins—Monro scheme can be studied by means of differential algebraic equations. This approach provides a method of obtaining strong laws for the process {Xn}.
We study the genealogical structure of a population with stochastically fluctuating size. If such fluctuations, after suitable rescaling, can be approximated by a nice continuous-time process, we prove weak convergence in the Skorokhod topology of the scaled ancestral process to a stochastic time change of Kingman's coalescent, the time change being given by an additive functional of the limiting backward size process.
This paper introduces a new graph constructed from a point process. The idea is to connect a point with its nearest neighbour, then to the second nearest and continue this process until the point belongs to the interior of the convex hull of these nearest neighbours. The number of such neighbours is called the degree of a point. We derive the distribution of the degree of the typical point in a Poisson process, prove a central limit theorem for the sum of degrees, and propose an edge-corrected estimator of the distribution of the degree that is unbiased for a stationary Poisson process. Simulation studies show that this degree is a useful concept that allows the separation of clustering and repulsive behaviour of point processes.
Sums of independent random variables concentrated on the same finite discrete, not necessarily lattice, set of points are approximated by compound Poisson distributions and signed compound Poisson measures. Such approximations can be more accurate than the normal distribution. Short asymptotic expansions are constructed.
We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.
In this paper, we consider the total variation distance between the distributions of two random sums SM and SN with different random summation indices M and N. We derive upper bounds, some of which are sharp. Further, bounds with so-called magic factors are possible. Better results are possible when M and N are stochastically or stop-loss ordered. It turns out that the solution of this approximation problem strongly depends on how many of the first moments of M and N coincide. As approximations, we therefore choose suitable finite signed measures, which coincide with the distribution of the approximating random sum SN if M and N have the same first moments.
We derive the asymptotic joint normality, by a martingale approach, for the numbers of upper records, lower records and inversions in a random sequence.
In this paper, we introduce a compound random mapping model which can be viewed as a generalization of the basic random mapping model considered by Ross and by Jaworski. We investigate a particular example, the Poisson compound random mapping, and compare results for this model with results known for the well-studied uniform random mapping model. We show that, although the structure of the components of the random digraph associated with a Poisson compound mapping differs from the structure of the components of the random digraph associated with the uniform model, the limiting distribution of the normalized order statistics for the sizes of the components is the same as in the uniform case, i.e. the limiting distribution is the Poisson-Dirichlet (½) distribution on the simplex {{xi} : ∑ xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1}.