To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to investigate discrete approximations of the exponential functional of Brownian motion (which plays an important role in Asian options of financial mathematics) with the help of simple, symmetric random walks. In some applications the discrete model could be even more natural than the continuous one. The properties of the discrete exponential functional are rather different from the continuous one: typically its distribution is singular with respect to Lebesgue measure, all of its positive integer moments are finite and they characterize the distribution. On the other hand, using suitable random walk approximations to Brownian motion, the resulting discrete exponential functionals converge almost surely to the exponential functional of Brownian motion; hence their limit distribution is the same as in the continuous case, namely that of the reciprocal of a gamma random variable, and so is absolutely continuous with respect to Lebesgue measure. In this way, we also give a new and elementary proof of an earlier result by Dufresne and Yor.
The aim of this paper is to study the distribution of colours, {Xn}, in a generalized Pólya urn model with L colours, an urn function and a random environment. In this setting, the number of actions to be taken can be greater than L, and the total number of balls added in each step can be random. The process {Xn} is expressed as a stochastic recurrent equation that fits a Robbins—Monro scheme. Since this process evolves in the (L—1)-simplex, the stability of the solutions of the ordinary differential equation associated with the Robbins—Monro scheme can be studied by means of differential algebraic equations. This approach provides a method of obtaining strong laws for the process {Xn}.
We study the genealogical structure of a population with stochastically fluctuating size. If such fluctuations, after suitable rescaling, can be approximated by a nice continuous-time process, we prove weak convergence in the Skorokhod topology of the scaled ancestral process to a stochastic time change of Kingman's coalescent, the time change being given by an additive functional of the limiting backward size process.
This paper introduces a new graph constructed from a point process. The idea is to connect a point with its nearest neighbour, then to the second nearest and continue this process until the point belongs to the interior of the convex hull of these nearest neighbours. The number of such neighbours is called the degree of a point. We derive the distribution of the degree of the typical point in a Poisson process, prove a central limit theorem for the sum of degrees, and propose an edge-corrected estimator of the distribution of the degree that is unbiased for a stationary Poisson process. Simulation studies show that this degree is a useful concept that allows the separation of clustering and repulsive behaviour of point processes.
Sums of independent random variables concentrated on the same finite discrete, not necessarily lattice, set of points are approximated by compound Poisson distributions and signed compound Poisson measures. Such approximations can be more accurate than the normal distribution. Short asymptotic expansions are constructed.
We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.
In this paper, we consider the total variation distance between the distributions of two random sums SM and SN with different random summation indices M and N. We derive upper bounds, some of which are sharp. Further, bounds with so-called magic factors are possible. Better results are possible when M and N are stochastically or stop-loss ordered. It turns out that the solution of this approximation problem strongly depends on how many of the first moments of M and N coincide. As approximations, we therefore choose suitable finite signed measures, which coincide with the distribution of the approximating random sum SN if M and N have the same first moments.
We derive the asymptotic joint normality, by a martingale approach, for the numbers of upper records, lower records and inversions in a random sequence.
In this paper, we introduce a compound random mapping model which can be viewed as a generalization of the basic random mapping model considered by Ross and by Jaworski. We investigate a particular example, the Poisson compound random mapping, and compare results for this model with results known for the well-studied uniform random mapping model. We show that, although the structure of the components of the random digraph associated with a Poisson compound mapping differs from the structure of the components of the random digraph associated with the uniform model, the limiting distribution of the normalized order statistics for the sizes of the components is the same as in the uniform case, i.e. the limiting distribution is the Poisson-Dirichlet (½) distribution on the simplex {{xi} : ∑ xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1}.
Galton-Watson forests consisting of N roots (or trees) and n nonroot vertices are studied. The limit distributions of the number of leaves in such a forest are obtained. By a leaf we mean a vertex from which there are no arcs emanating.
Moderate deviation principles are established in dimensions d ≥ 3 for super-Brownian motion with random immigration, where the immigration rate is governed by the trajectory of another super-Brownian motion. It fills in the gap between the central limit theorem and large deviation principles for this model which were obtained by Hong and Li (1999) and Hong (2001).
The spherical functions of triangle buildings can be described in terms of certain two-dimensional orthogonal polynomials on Steiner's hypocycloid which are closely related to Hall-Littlewood polynomials. They lead to a one-parameter family of two-dimensional polynimial hypergroups. In this paper we investigate isotropic random walks on the vertex sets of triangle buildings in terms of their projections to these hypergroups. We present strong laws of large numbers, a central limit theorem, and a local limit theorem; all these results are well-known for homogeneous trees. Proofs are based on moment functions on hypergroups and on explicit expansions of the hypergroup characters in terms of certain two-dimensional Tchebychev polynimials.
The goal of this paper is to investigate properties of statistical procedures based on numbers of different patterns by using generating functions for the probabilities of a prescribed number of occurrences of given patterns in a random text. The asymptotic formulae are derived for the expected value of the number of words occurring a given number of times and for the covariance matrix. The form of the optimal linear test based on these statistics is established. These problems appear in testing for the randomness of a string of binary bits, DNA sequencing, source coding, synchronization, quality control protocols, etc. Indeed, the probabilities of repeated (overlapping) patterns are important in information theory (the second-order properties of relative frequencies)and molecular biology problems (finding patterns with unexpectedly low or high frequencies).
The random variables X1, X2, …, Xnare said to be totally negatively dependent (TND) if and only if the random variables Xi and ∑j≠iXjare negatively quadrant dependent for all i. Our main result provides, for TND 0-1 indicators X1, x2, …, Xnwith P[Xi = 1] = pi = 1 - P[Xi = 0], an upper bound for the total variation distance between ∑ni=1Xiand a Poisson random variable with mean λ ≥ ∑ni=1pi. An application to a generalized birthday problem is considered and, moreover, some related results concerning the existence of monotone couplings are discussed.
Let X, X1, X2, … be a sequence of i.i.d. random closed subsets of a certain locally compact, Hausdorff and separable base space E. For a fixed normalised Borel measure μ on E, we investigate the behaviour of random variables μ(E \ (X1 ∪ ∙ ∙ ∙ ∪ Xn)) for large n. The results obtained include a description of variance asymptotics, strong law of large numbers and a central limit theorem. As an example we give an application of the developed methods for asymptotic analysis of the mean width of convex hulls generated by uniform samples from a multidimensional ball. Another example deals with unions of random balls in ℝd with centres distributed according to a spherically-symmetric heavy-tailed law.
We generalize Banach's matchbox problem: demands of random size are made on one of two containers, both initially with content t, where the container is selected at random in the successive steps. Let Zt be the content of the other container at the moment when the selected container is found to be insufficient. We obtain the asymptotic distribution of Zt as t → ∞ under quite general conditions. The case of exponentially distributed demands is considered in more detail.
A large deviation expansion is used to evaluate the impact of errors in a geographical database on the computation of travel times. We work in the framework of discrete random variables and improve a theorem by Book to solve this problem. Simulations are provided to illustrate the methodology.
Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well.
Asymptotic behaviour of the distribution of the absolute maximum of a process with independent increments is studied depending on the properties of the Lévy measure of the process. Some applications to the risk process are also considered.
For a real-valued ergodic process X with strictly stationary increments satisfying some measurability and continuity assumptions it is proved that the long-run ‘average behaviour’ of all its increments over finite intervals replicates the distribution of the corresponding increments of X in a strong sense. Moreover, every Lévy process has a version that possesses this ergodic path property.