We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kingman's classical theory of the coalescent uncovered the basic pattern of genealogical trees of random samples of individuals in large but time-constant populations. Time is viewed as being discrete and is identified with non-overlapping generations. Reproduction can be very generally taken as exchangeable (meaning that the labelling of individuals in each generation carries no significance). Recent generalisations have dealt with population sizes exhibiting given deterministic or (minor) random fluctuations. We consider population sizes which constitute a stationary Markov chain, explicitly allowing large fluctuations in short times. Convergence of the genealogical tree, as population size tends to infinity, towards the (time-scaled) coalescent is proved under minimal conditions. As a result, we obtain a formula for effective population size, generalising the well-known harmonic mean expression for effective size.
The focus of our attention is the limit distribution of the sum of independent and identically distributed random vectors from which all the extreme summands are removed. The problem is rather trivial if the summands are ordered by their norms. It is of much more interest when the vertices of the convex hull generated by the vectors are taken as the extremes.
Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.
We derive a large-deviation principle for super-Brownian motion with immigration, where the immigration is governed by the Lebesgue measure. We show that the speed function is t1/2 for d = 1, t/logt for d = 2 and t for d ≥ 3, which is different from that of the occupation-time process counterpart (without immigration) and the model of random immigration.
We consider minimum relative entropy calibration of a given prior distribution to a finite set of moment constraints. We show that the calibration algorithm is stable (in the Prokhorov metric) under a perturbation of the prior and the calibrated distributions converge in variation to the measure from which the moments have been taken as more constraints are added. These facts are used to explain the limiting properties of the minimum relative entropy Monte Carlo calibration algorithm.
The central limit theorem for random walks on ℤ in an i.i.d. space-time random environment was proved by Bernabei et al. for almost all realization of the environment, under a small randomness assumption. In this paper, we prove that, in the nearest-neighbour case, when the averaged random walk is symmetric, the almost sure central limit theorem holds for an arbitrary level of randomness.
This paper introduces a method of generating real harmonizable multifractional Lévy motions (RHMLMs). The simulation of these fields is closely related to that of infinitely divisible laws or Lévy processes. In the case where the control measure of the RHMLM is finite, generalized shot-noise series are used. An estimation of the error is also given. Otherwise, the RHMLM Xh is split into two independent RHMLMs, Xε,1 and Xε,2. More precisely, Xε,2 is an RHMLM whose control measure is finite. It can then be rewritten as a generalized shot-noise series. The asymptotic behaviour of Xε,1
as ε → 0+ is further elaborated. Sufficient conditions to approximate Xε,1
by a multifractional Brownian motion are given. The error rate in terms of Berry-Esseen bounds is then discussed. Finally, some examples of simulation are given.
Let {Xk, k ≥ 1} be a sequence of independent, identically distributed nonnegative random variables with common distribution function F and finite expectation μ > 0. Under the assumption that the tail probability is consistently varying as x tends to infinity, this paper investigates precise large deviations for both the partial sums Sn and the random sums SN(t), where N(·) is a counting process independent of the sequence {Xk, k ≥ 1}. The obtained results improve some related classical ones. Applications to a risk model with negatively associated claim occurrences and to a risk model with a doubly stochastic arrival process (extended Cox process) are proposed.
We prove some central limit theorems for a two-level super-Brownian motion with random immigration, which lead to limiting Gaussian random fields. The covariances of those Gaussian fields are explicitly characterized.
We investigate some effects that the ‘light' trimming of a sum Sn = X1 + X2 + · ·· + Xn of independent and identically distributed random variables has on behaviour of iterated logarithm type. Light trimming is defined as removing a constant number of summands from Sn. We consider two versions: (r)Sn, which is obtained by deleting the r largest Xi from Sn, and , which is obtained by deleting the r variables Xi which are largest in absolute value from Sn. We summarise some relevant results from Rogozin (1968), Heyde (1969), and later writers concerning the untrimmed sum, and add some new results concerning trimmed sums. Among other things we show that a general form of the law of the iterated logarithm holds for but not (completely) for .
This paper investigates the probabilistic behaviour of the eigenvalue of the empirical transition matrix of a Markov chain which is of largest modulus other than 1, loosely called the second-largest eigenvalue. A central limit theorem is obtained for nonmultiple eigenvalues of the empirical transition matrix. When the Markov chain is actually a sequence of independent observations the distribution of the second-largest eigenvalue is determined and a test for independence is developed. The independence case is considered in more detail when the Markov chain has only two states, and some applications are given.
The paper studies convergence of sequences of negatively associated random variables under various summability methods. The results extend previously known results for independence and complement known results for ϕ-mixing.
Univariate heavy-tailed analysis rests on the analytic notion of regularly varying functions. For multivariate heavy-tailed analysis, reliance on functions is awkward because multivariate distribution functions are not natural objects for many purposes and are difficult to manipulate. An approach based on vague convergence of measures makes the differences between univariate and multivariate analysis evaporate. We survey the foundations of the subject and discuss statistical attempts to assess dependence of large values. An exploratory technique is applied to exchange rate return data and shows clear differences in the dependence structure of large values for the Japanese Yen versus German Mark compared with the French Franc versus the German Mark.
Sums of independent random variables concentrated on discrete, not necessarily lattice, set of points are approximated by infinitely divisible distributions and signed compound Poisson measures. A version of Kolmogorov's first uniform theorem is proved. Second-order asymptotic expansions are constructed for distributions with pseudo-lattice supports.
The purpose of the paper is to study the asymptotic geometry of a smooth-grained Boolean model (X[t])t≥0 restricted to a bounded domain as the intensity parameter t goes to ∞. Our approach is based on investigating the asymptotic properties as t → ∞ of the random sets X[t;β], β≥0, defined as the Gibbsian modifications of X[t] with the Hamiltonian given by βtμ(·), where μ is a certain normalized measure on the setting space. We show that our model exhibits a phase transition at a certain critical value of the inverse temperature β and we prove that at higher temperatures the behaviour of X[t;β] is qualitatively very similar to that of X[t] but it becomes essentially different in the low-temperature region. From these facts we derive information about the asymptotic properties of the original process X[t]. The results obtained include large- and moderate-deviation principles. We conclude the paper with an example application of our methods to analyse the asymptotic moderate-deviation properties of convex hulls of large uniform samples on a multidimensional ball. To translate the above problem to the Boolean model setting considered we use an appropriate representation of convex sets in terms of their support functions.
For supercritical multitype Markov branching processes in continuous time, we investigate the evolution of types along those lineages that survive up to some time t. We establish almost-sure convergence theorems for both time and population averages of ancestral types (conditioned on nonextinction), and identify the mutation process describing the type evolution along typical lineages. An important tool is a representation of the family tree in terms of a suitable size-biased tree with trunk. As a by-product, this representation allows a ‘conceptual proof’ (in the sense of Kurtz et al.) of the continuous-time version of the Kesten-Stigum theorem.
The general coalescent process with simultaneous multiple mergers of ancestral lines was initially characterized by Möhle and Sagitov (2001) in terms of a sequence of measures defined on the finite-dimensional simplices. A more compact characterization of the general coalescent requiring a single probability measure Ξ defined on the infinite simplex Δ was suggested by Schweinsberg (2000). This paper presents a simple criterion of weak convergence to the Ξ-coalescent. In contrast to the earlier criterion of Möhle and Sagitov (2001) based on the moment conditions, the key condition here is expressed in terms of the joint distribution of the ranked offspring sizes. This criterion interprets a vector in Δ as the ranked fractions of the total population size assigned to sibling groups constituting a (rare) generation, where a merger might occur. An example of the general coalescent is developed on the basis of the Poisson–Dirichlet distribution. It suggests a simple algorithm of simulating the Kingman coalescent with occasional (simultaneous) multiple mergers.
Modelling the distribution of mutations of mitochondrial DNA in exponentially growing cell cultures leads to the study of a multitype Galton–Watson process during its transient phase. The number of types corresponds to the number of mtDNA per cell and may be considered as large. By taking advantage of this fact we prove that the stochastic process is deterministic-like on the set of nonextinction. On this set almost all trajectories are well approximated by the unique solution of a partial differential problem. This result allows also the comparison of trajectories corresponding to different modelling assumptions, for instance different values of the number of types.
Consider a circle of circumference 1. Throw n points at random onto this circle and append to each of these points a clockwise arc of length s. The resulting random set is a union of a random number of connected components, each with specific size. Using tools designed by Steutel, we compute the joint distribution of the lengths of the connected components. Asymptotic results are presented when n goes to ∞ and s to 0 jointly according to different regimes.
In this paper, we consider Galton–Watson trees conditioned by size. We show that the number of k-ancestors (ancestors that have k children) of a node u is (almost) proportional to its depth. The k, j-ancestors are also studied. The methods rely on the study of ladder variables on an associated random walk. We also give an application to finite branching random walks.