We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A linear list is a collection of items that can be accessed sequentially. The cost of a request is the number of items that need to be examined before the desired item is located, i.e. the distance of the requested item from the beginning of the list. The transposition rule is one of the algorithms designed to reduce the search cost by organizing the list. In particular, upon a request for a given item, the item is transposed with the preceding one. We develop a new approach for analyzing the algorithm, based on a coupling to a certain constrained asymmetric exclusion process. This allows us to establish an asymptotic optimality of the rule for two families of request distributions.
We consider stationary and ergodic tessellations X = Ξnn≥1 in Rd, where X is observed in a bounded and convex sampling window Wp ⊂ Rd. It is assumed that the cells Ξn of X possess random inner structures, examples of which include point patterns, fibre systems, and tessellations. These inner cell structures are generated, both independently of each other and independently of the tessellation X, by generic stationary random sets that are related to a stationary random vector measure J0 acting on Rd. In particular, we study the asymptotic behaviour of a multivariate random functional, which is determined both by X and by the individual cell structures contained in Wp, as Wp ↑ Rd. It turns out that this functional provides an unbiased estimator for the intensity vector associated with J0. Furthermore, under natural restrictions, strong laws of large numbers and a multivariate central limit theorem of the normalized functional are proven. Finally, we discuss in detail some numerical examples and applications, for which the inner structures of the cells of X are induced by iterated Poisson-type tessellations.
The first passage time of a random walk to a barrier (constant or concave) is of great importance in many areas, such as insurance, finance, and sequential analysis. Here, we consider a sum of independent, identically distributed random variables and the convex barrier cb(n/c), where c is a scale parameter and n is time. It is shown, using large-deviation techniques, that the limit distribution of the first passage time decays exponentially in c. Under a tilt of measure, which changes the drift, four properties are proved: the limit distribution of the overshoot is distributed as an overshoot over a linear barrier; the stopping time is asymptotically normally distributed when it is properly normalized; the overshoot and the asymptotic normal part are asymptotically independent; and the overshoot over a linear barrier is bounded by an exponentially distributed random variable. The determination of the function that multiplies the exponential part is guided by consideration of these properties.
Let Yk(ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z(ω) := ∑k≥0Yk(ω) is the total progeny of ω. In this paper, we will prove various statistical properties of Z and Yk. We first show, under a mild condition, an asymptotic expansion of P(Z = n) as n → ∞, improving the theorem of Otter (1949). Next, we show that Yk(ω) := ∑j=0kYj(ω) is the total progeny of a new Galton-Watson tree that is hidden in the original tree ω. We then proceed to study the joint probability distribution of Z and Ykk, and show that, as n → ∞, Yk/nk is asymptotically Gaussian under the conditional distribution P(· | Z = n).
In practical situations, we observe the number of claims to an insurance portfolio but not the claim intensity. It is therefore of interest to try to solve the ‘filtering problem’; that is, to obtain the best estimate of the claim intensity on the basis of reported claims. In order to use the Kalman-Bucy filter, based on the Cox process incorporating a shot noise process as claim intensity, we need to approximate it by a Gaussian process. We demonstrate that, if the primary-event arrival rate of the shot noise process is reasonably large, we can then approximate the intensity, claim arrival, and aggregate loss processes by a three-dimensional Gaussian process. We establish weak-convergence results. We then use the Kalman-Bucy filter and we obtain the price of reinsurance contracts involving high-frequency events.
We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.
Given a sequence of bounded random variables that satisfies a well-known mixing condition, it is shown that empirical estimates of the rate function for the partial sums process satisfy the large deviation principle in the space of convex functions equipped with the Attouch-Wets topology. As an application, a large deviation principle for estimating the exponent in the tail of the queue length distribution at a single-server queue with infinite waiting space is proved.
In this paper, we analyze the diffusion limit of a discrete-time queueing system with constant service rate and connections that randomly enter and depart from the system. Each connection generates periodic traffic while it is active, and a connection's lifetime has finite mean. This can model a time division multiple access system with constant bit-rate connections. The diffusion scaling retains semiperiodic behavior in the limit, allowing for both short-time analysis (within one frame) and long-time analysis (over multiple frames). Weak convergence of the cumulative arrival process and the stationary buffer-length distribution is proved. It is shown that the limit of the cumulative arrival process can be viewed as a discrete-time stationary-increment Gaussian process interpolated by Brownian bridges. We present bounds on the overflow probability of the limit queueing process as functions of the arrival rate and the connection lifetime distribution. Also, numerical and simulation results are presented for geometrically distributed connection lifetimes.
We consider two versions of a simple evolutionary algorithm (EA) model for protein folding at zero temperature, namely the (1 + 1)-EA on the LeadingOnes problem. In this schematic model, the structure of the protein, which is encoded as a bit-string of length n, is evolved to its native conformation through a stochastic pathway of sequential contact bindings. We study the asymptotic behavior of the hitting time, in the mean case scenario, under two different mutations: the one-flip, which flips a unique bit chosen uniformly at random in the bit-string, and the Bernoulli-flip, which flips each bit in the bit-string independently with probability c/n, for some c ∈ ℝ+ (0 ≤ c ≤ n). For each algorithm, we prove a law of large numbers, a central limit theorem, and compare the performance of the two models.
The third-generation (3G) mobile communication system uses a technique called code division multiple access (CDMA), in which multiple users use the same frequency and time domain. The data signals of the users are distinguished using codes. When there are many users, interference deteriorates the quality of the system. For more efficient use of resources, we wish to allow more users to transmit simultaneously, by using algorithms that utilize the structure of the CDMA system more effectively than the simple matched filter (MF) system used in the proposed 3G systems. In this paper, we investigate an advanced algorithm called hard-decision parallel interference cancellation (HD-PIC), in which estimates of the interfering signals are used to improve the quality of the signal of the desired user. We compare HD-PIC with MF in a simple case, where the only two parameters are the number of users and the length of the coding sequences. We focus on the exponential rate for the probability of a bit-error, explain the relevance of this parameter, and investigate how it scales when the number of users grows large. We also review extensions of our results, proved elsewhere, showing that in HD-PIC, more users can transmit without errors than in the MF system.
In this article we investigate a class of superprocess with cut-off branching, studying the long-time behavior of the occupation time process. Persistence of the process holds in all dimensions. Central-limit-type theorems are obtained, and the scales are dimension dependent. The Gaussian limit holds only when d ≤ 4. In dimension one, a full large deviation principle is established and the rate function is identified explicitly. Our result shows that the super-Brownian motion with cut-off branching in dimension one has many features that are similar to super-Brownian motion in dimension three.
Consider a sequence of independent Bernoulli trials with success probability p. Let N(n; k1, k2) denote the number of times that k1 failures are followed by k2 successes among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total variation upper bound for the rate of convergence of N(n; k1, k2) to a suitable Poisson random variable. As a special case, the corresponding limit theorem is established. Similar results are obtained for Nk3(n; k1, k2), the number of times that k1 failures followed by k2 successes occur k3 times successively in n Bernoulli trials. The bounds obtained are generally sharper than, and improve upon, some of the already known results. Finally, the technique is adapted to obtain Poisson approximation results for the occurrences of the above-mentioned events under Markov-dependent trials.
We present several results refining and extending those of Neuts and Alfa on weak convergence of the pair-formation process when arrivals follow two independent Poisson processes. Our results are obtained using a different, more straightforward, and apparently simpler probabilistic approach. Firstly, we give a very short proof of the fact that the convergence of the pair-formation process to a Poisson process actually holds in total variation (with a bound for convergence rate). Secondly, we extend the result of the theorem to the case of multiple labels: there are d independent arrival Poisson processes, and we are looking at the epochs when d-tuples are formed. Thirdly, we extend the original (weak convergence) result to the case when arrivals follow independent renewal processes (this extension is also valid for the d-tuple formation).
We derive results that show the impact of aggregation in a queueing network. Our model consists of a two-stage queueing system where the first (upstream) queue serves many flows, of which a certain subset arrive at the second (downstream) queue. The downstream queue experiences arbitrary interfering traffic. In this setup, we prove that, as the number of flows being aggregated in the upstream queue increases, the overflow probability of the downstream queue converges uniformly in the buffer level to the overflow probability of a single queueing system obtained by simply removing the upstream queue in the original two-stage queueing system. We also provide the speed of convergence and show that it is at least exponentially fast. We then extend our results to non-i.i.d. traffic arrivals.
Large deviation results are obtained for the normed limit of a supercritical multitype branching process. Starting from a single individual of type i, let L[i] be the normed limit of the branching process, and let be the minimum possible population size at generation k. If is bounded in k (bounded minimum growth), then we show that P(L[i] ≤ x) = P(L[i] = 0) + xαF*[i](x) + o(xα) as x → 0. If grows exponentially in k (exponential minimum growth), then we show that −log P(L[i] ≤ x) = x−β/(1−β) G*[i](x) + o (x−β/(1−β)) as x → 0. If the maximum family size is bounded, then −log P(L[i] > x) = xδ/(δ−1)H*[i](x) + o(xδ/(δ−1)) as x → ∞. Here α, β and δ are constants obtained from combinations of the minimum, maximum and mean growth rates, and F*, G* and H* are multiplicatively periodic functions.
Sums of log-normals frequently appear in a variety of situations, including engineering and financial mathematics. In particular, the pricing of Asian or basket options is directly related to finding the distributions of such sums. There is no general explicit formula for the distribution of sums of log-normal random variables. This paper looks at the limit distributions of sums of log-normal variables when the second parameter of the log-normals tends to zero or to infinity; in financial terms, this is equivalent to letting the volatility, or maturity, tend either to zero or to infinity. The limits obtained are either normal or log-normal, depending on the normalization chosen; the same applies to the reciprocal of the sums of log-normals. This justifies the log-normal approximation, much used in practice, and also gives an asymptotically exact distribution for averages of log-normals with a relatively small volatility; it has been noted that all the analytical pricing formulae for Asian options perform poorly for small volatilities. Asymptotic formulae are also found for the moments of the sums of log-normals. Results are given for both discrete and continuous averages. More explicit results are obtained in the case of the integral of geometric Brownian motion.
In Bhatt and Roy's minimal directed spanning tree construction for n random points in the unit square, all edges must be in a south-westerly direction and there must be a directed path from each vertex to the root placed at the origin. We identify the limiting distributions (for large n) for the total length of rooted edges, and also for the maximal length of all edges in the tree. These limit distributions have been seen previously in analysis of the Poisson-Dirichlet distribution and elsewhere; they are expressed in terms of Dickman's function, and their properties are discussed in some detail.
We introduce a class of discrete-time stochastic processes generated by interacting systems of reinforced urns. We show that such processes are asymptotically partially exchangeable and we prove a strong law of large numbers. Examples and the analysis of particular cases show that interacting reinforced-urn systems are very flexible representations for modelling countable collections of dependent and asymptotically exchangeable sequences of random variables.
Continuous-time random walks incorporate a random waiting time between random jumps. They are used in physics to model particle motion. A physically realistic rescaling uses two different time scales for the mean waiting time and the deviation from the mean. This paper derives the scaling limits for such processes. These limit processes are governed by fractional partial differential equations that may be useful in physics. A transfer theorem for weak convergence of finite-dimensional distributions of stochastic processes is also obtained.
We study geometric moment contracting properties of nonlinear time series that are expressed in terms of iterated random functions. Under a Dini-continuity condition, a central limit theorem for additive functionals of such systems is established. The empirical processes of sample paths are shown to converge to Gaussian processes in the Skorokhod space. An exponential inequality is established. We present a bound for joint cumulants, which ensures the applicability of several asymptotic results in spectral analysis of time series. Our results provide a vehicle for statistical inferences for fractals and many nonlinear time series models.