To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Large deviation estimates are derived for sums of random variables with certain dependence structures, including finite population statistics and random graphs. The argument is based on Stein's method, but with a novel modification of Stein's equation inspired by the Cramér transform.
A stack is a structural unit in an RNA structure that is formed by pairs of hydrogen bonded nucleotides. Paired nucleotides are scored according to their ability to hydrogen bond. We consider stack/hairpin-loop structures for a sequence of independent and identically distributed random variables with values in a finite alphabet, and we show how to obtain an asymptotic Poisson distribution of the number of stack/hairpin-loop structures with a score exceeding a high threshold, given that we count in a proper, declumped way. From this result we obtain an asymptotic Gumbel distribution of the maximal stack score. We also provide examples focusing on the computation of constants that enter in the asymptotic distributions. Finally, we discuss the close relation to existing results for local alignment.
The transmission control protocol (TCP) is a transport protocol used in the Internet. In Ott (2005), a more general class of candidate transport protocols called ‘protocols in the TCP paradigm’ was introduced. The long-term objective of studying this class is to find protocols with promising performance characteristics. In this paper we study Markov chain models derived from protocols in the TCP paradigm. Protocols in the TCP paradigm, as TCP, protect the network from congestion by decreasing the ‘congestion window’ (i.e. the amount of data allowed to be sent but not yet acknowledged) when there is packet loss or packet marking, and increasing it when there is no loss. When loss of different packets are assumed to be independent events and the probability p of loss is assumed to be constant, the protocol gives rise to a Markov chain {Wn}, where Wn is the size of the congestion window after the transmission of the nth packet. For a wide class of such Markov chains, we prove weak convergence results, after appropriate rescaling of time and space, as p → 0. The limiting processes are defined by stochastic differential equations. Depending on certain parameter values, the stochastic differential equation can define an Ornstein-Uhlenbeck process or can be driven by a Poisson process.
In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Zn; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.
A multitype urn scheme with random replacements is considered. Each time a ball is picked, another ball is added, and its type is chosen according to the transition probabilities of a reducible Markov chain. The vector of frequencies is shown to converge almost surely to a random element of the set of stationary measures of the Markov chain. Its probability distribution is characterized as the solution to a fixed point problem. It is proved to be Dirichlet in the particular case of a single transient state to which no return is possible. This is no longer the case, however, as soon as returns to transient states are allowed.
We derive an asymptotic expansion for the distribution of a compound sum of independent random variables, all having the same rapidly varying subexponential distribution. The examples of a Poisson and geometric number of summands serve as an illustration of the main result. Complete calculations are done for a Weibull distribution, with which we derive, as examples and without any difficulties, seven-term expansions.
In this paper we propose a class of sequential urn designs based on generalized Pólya urn (GPU) models for balancing the allocations of two treatments in sequential clinical trials. In particular, we consider a GPU model characterized by a 2 x 2 random addition matrix with null balance (i.e. null row sums) and replacement rule depending upon the urn composition. Under this scheme, the urn process has a Markovian structure and can be regarded as a random extension of the classical Ehrenfest model. We establish almost sure convergence and asymptotic normality for the frequency of treatment allocations and show that in some peculiar cases the asymptotic variance of the design admits a natural representation based on the set of orthogonal polynomials associated with the corresponding Markov process.
Given two sequences of length n over a finite alphabet A of size |A| = d, the D2 statistic is the number of k-letter word matches between the two sequences. This statistic is used in bioinformatics for EST sequence database searches. Under the assumption of independent and identically distributed letters in the sequences, Lippert, Huang and Waterman (2002) raised questions about the asymptotic behavior of D2 when the alphabet is uniformly distributed. They expressed a concern that the commonly assumed normality may create errors in estimating significance. In this paper we answer those questions. Using Stein's method, we show that, for large enough k, the D2 statistic is approximately normal as n gets large. When k = 1, we prove that, for large enough d, the D2 statistic is approximately normal as n gets large. We also give a formula for the variance of D2 in the uniform case.
We investigate the large scale behaviour of a Lévy process whose jump magnitude follows a stable law with spherically inhomogenous scaling coefficients. Furthermore, the jumps are dragged in the spherical direction by a dynamical system which has an attractor.
In this paper we are interested in a nonlinear parabolic evolution equation occurring in rheology. We give a probabilistic interpretation to this equation by associating a nonlinear martingale problem with it. We prove the existence of a unique solution, P, to this martingale problem. For any t, the time marginal of P at time t admits a density ρ(t,x) with respect to the Lebesgue measure, where the function ρ is the unique weak solution to the evolution equation in a well-chosen energy space. Next we introduce a simulable system of n interacting particles and prove that the empirical measure of this system converges to P as n tends to ∞. This propagation-of-chaos result ensures that the solution to the equation of interest can be approximated using a Monte Carlo method. Finally, we illustrate the convergence in some numerical experiments.
For a Markov renewal process where the time parameter is discrete, we present a novel method for calculating the asymptotic variance. Our approach is based on the key renewal theorem and is applicable even when the state space of the Markov chain is countably infinite.
Corrections are made to formulations and proofs of some theorems about convolution equivalence closure for random sum distributions. These arise because of the falsity of a much used asymptotic equivalence lemma, and they impinge on the convolution equivalence closure theorem for general infinitely divisible laws.
We give precise asymptotic estimates of the tail behavior of the distribution of the supremum of a process with regenerative increments. Our results cover four qualitatively different regimes involving both light tails and heavy tails, and are illustrated with examples arising in queueing theory and insurance risk.
We introduce a new class of spatial-temporal point processes based on Voronoi tessellations. At each step of such a process, a point is chosen at random according to a distribution determined by the associated Voronoi cells. The point is then removed, and a new random point is added to the configuration. The dynamics are simple and intuitive and could be applied to modelling natural phenomena. We prove ergodicity of these processes under wide conditions.
Under the unifying umbrella of a general result of Penrose and Yukich (Annals of Applied Probability13 (2003), 277-303) we give laws of large numbers (in the Lp sense) for the total power-weighted length of several nearest-neighbour-type graphs on random point sets in ℝd, d ∈ ℕ. Some of these results are known; some are new. We give limiting constants explicitly, where previously they have been evaluated in less generality or not at all. The graphs we consider include the k-nearest-neighbours graph, the Gabriel graph, the minimal directed spanning forest, and the on-line nearest-neighbour graph.
Based on the concept of multipower variation we establish a class of easily computable and robust estimators for the integrated volatility, especially including the squared integrated volatility, in Lévy-type stochastic volatility models. We derive consistency and feasible distributional results for the estimators. Furthermore, we discuss the applications to time-changed CGMY, normal inverse Gaussian, and hyperbolic models with and without leverage, where the time-changes are based on integrated Cox-Ingersoll-Ross or Ornstein-Uhlenbeck-type processes. We deduce which type of market microstructure does not affect the estimates.
We consider a constant rate traffic which shares a buffer with a random cross traffic. A first come first served or priority service discipline is applied at the buffer. After service at the first buffer the constant rate traffic moves to a play-out buffer. Both buffers provide service at constant rate and infinite waiting room. We investigate logarithmic large and moderate deviation asymptotics for the tail probabilities of the steady-state queue length distribution at the play-out buffer for long-range dependent cross traffic in critical loading. We characterize the asymptotic behavior of the cross traffic which leads to a large queue length at the play-out buffer and compare it to the one for renewal cross traffic.
A network belongs to the monotone separable class if its state variables are homogeneous and monotone functions of the epochs of the arrival process. This framework contains several classical queueing network models, including generalized Jackson networks, max-plus networks, polling systems, multiserver queues, and various classes of stochastic Petri nets. We use comparison relationships between networks of this class with independent and identically distributed driving sequences and the GI/GI/1/1 queue to obtain the tail asymptotics of the stationary maximal dater under light-tailed assumptions for service times. The exponential rate of decay is given as a function of a logarithmic moment generating function. We exemplify an explicit computation of this rate for the case of queues in tandem under various stochastic assumptions.
We consider a weighted random walk model defined as follows. An n-step random walk on the integers with distribution Pn is weighted by giving the path S=(S0,…,Sn) a probability proportional to where the function f is the so-called fitness function. In the case of power-type fitness, we prove the convergence of the renormalized path to a deterministic function with exponential speed. This function is a solution to a variational problem. In the case of the simple symmetric random walk, explicit computations are done. Our result relies on large deviations techniques and Varadhan's integral lemma. We then study an application of this model to mutation-selection dynamics on the integers where a random walk operates the mutation. This dynamics is the infinite-population limit of that of mutation-selection genetic algorithms. We prove that the population grows to ∞ and make explicit its growth speed. This is a toy model for modelling the effect of stronger selection at ∞ for genetic algorithms taking place in a noncompact space.
We show that there exist symmetric properties in the discrete n-cube whose threshold widths range asymptotically between 1/√n and 1/logn. These properties are built using a combination of failure sets arising in reliability theory. This combination of sets is simply called a product. Some general results on the threshold width of the product of two sets A and B in terms of the threshold locations and widths of A and B are provided.