To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let {Zt}t≥0 be a Lévy process with Lévy measure ν, and let τ(t)=∫0tr(u) d u, where {r(t)}t≥0 is a positive ergodic diffusion independent from Z. Based upon discrete observations of the time-changed Lévy process Xt≔Zτt during a time interval [0,T], we study the asymptotic properties of certain estimators of the parameters β(φ)≔∫φ(x)ν(d x), which in turn are well known to be the building blocks of several nonparametric methods such as sieve-based estimation and kernel estimation. Under uniform boundedness of the second moments of r and conditions on φ necessary for the standard short-term ergodic property limt→ 0 E φ(Zt)/t = β(φ) to hold, consistency and asymptotic normality of the proposed estimators are ensured when the time horizon T increases in such a way that the sampling frequency is high enough relative to T.
We consider the two-dimensional version of a drainage network model introduced in Gangopadhyay, Roy and Sarkar (2004), and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed in Fontes, Isopi, Newman and Ravishankar (2002).
Let (Xi)i∈ℕ be a sequence of independent and identically distributed random variables with values in the set ℕ0of nonnegative integers. Motivated by applications in enumerative combinatorics and analysis of algorithms we investigate the number of gaps and the length of the longest gap in the set {X1,…,Xn} of the first n values. We obtain necessary and sufficient conditions in terms of the tail sequence (qk)k∈ℕ0,qk=P(X1≥ k), for the gaps to vanish asymptotically as n→∞: these are ∑k=0∞qk+1/qk <∞ and limk→∞qk+1/qk=0 for convergence almost surely and convergence in probability, respectively. We further show that the length of the longest gap tends to ∞ in probability if qk+1/qk→ 1. For the family of geometric distributions, which can be regarded as the borderline case between the light-tailed and the heavy-tailed situations and which is also of particular interest in applications, we study the distribution of the length of the longest gap, using a construction based on the Sukhatme–Rényi representation of exponential order statistics to resolve the asymptotic distributional periodicities.
The waste-recycling Monte Carlo (WRMC) algorithm introduced by physicists is a modification of the (multi-proposal) Metropolis–Hastings algorithm, which makes use of all the proposals in the empirical mean, whereas the standard (multi-proposal) Metropolis–Hastings algorithm uses only the accepted proposals. In this paper we extend the WRMC algorithm to a general control variate technique and exhibit the optimal choice of the control variate in terms of the asymptotic variance. We also give an example which shows that, in contradiction to the intuition of physicists, the WRMC algorithm can have an asymptotic variance larger than that of the Metropolis–Hastings algorithm. However, in the particular case of the Metropolis–Hastings algorithm called the Boltzmann algorithm, we prove that the WRMC algorithm is asymptotically better than the Metropolis–Hastings algorithm. This last property is also true for the multi-proposal Metropolis–Hastings algorithm. In this last framework we consider a linear parametric generalization of WRMC, and we propose an estimator of the explicit optimal parameter using the proposals.
We derive a moderate deviation principle for word counts (which is extended to counts of multiple patterns) in biological sequences under different models: independent and identically distributed letters, homogeneous Markov chains of order 1 and m, and, in view of the codon structure of DNA sequences, Markov chains with three different transition matrices. This enables us to approximate P-values for the number of word occurrences in DNA and protein sequences in a new manner.
Let X be a pure-jump subordinator (i.e. nondecreasing Lévy process with no drift) with infinite Lévy measure, let Xε be the sum of jumps not exceeding ε, and let µ(ε)=E[Xε(1)]. We study the question of weak convergence of Xε/µ(ε) as ε ↓0, in terms of the limit behavior of µ(ε)/ε. The most interesting case reduces to the weak convergence of Xε/ε to a subordinator whose marginals are generalized Dickman distributions; we give some necessary and sufficient conditions for this to hold. For a certain significant class of subordinators for which the latter convergence holds, and whose most prominent representative is the gamma process, we give some detailed analysis regarding the convergence quality (in particular, in the context of approximating X itself). This paper completes, in some respects, the study made by Asmussen and Rosiński (2001).
In this paper we examine the extremal tail probabilities of moving sums in a marked Poisson random field. These sums are computed by adding up the weighted occurrences of events lying within a scanning set of fixed shape and size. We also provide an alternative representation of the constants of the asymptotic formulae in terms of the occupation measure of the conditional local random field at zero, and extend these representations to the constants of asymptotic tail probabilities of Gaussian random fields.
We prove a central limit theorem for the sequence of random compositions of a two-color randomly reinforced urn. As a consequence, we are able to show that the distribution of the urn limit composition has no point masses.
In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after the nth draw, for large n.
In this paper we study efficient simulation algorithms for estimating P(X›x), where X is the total time of a job with ideal time T that needs to be restarted after a failure. The main tool is importance sampling, where a good importance distribution is identified via an asymptotic description of the conditional distribution of T given X›x. If T≡t is constant, the problem reduces to the efficient simulation of geometric sums, and a standard algorithm involving a Cramér-type root, γ(t), is available. However, we also discuss an algorithm that avoids finding the root. If T is random, particular attention is given to T having either a gamma-like tail or a regularly varying tail, and to failures at Poisson times. Different types of conditional limit occur, in particular exponentially tilted Gumbel distributions and Pareto distributions. The algorithms based upon importance distributions for T using these asymptotic descriptions have bounded relative error as x→∞ when combined with the ideas used for a fixed t. Nevertheless, we give examples of algorithms carefully designed to enjoy bounded relative error that may provide little or no asymptotic improvement over crude Monte Carlo simulation when the computational effort is taken into account. To resolve this problem, an alternative algorithm using two-sided Lundberg bounds is suggested.
Large deviation principles and related results are given for a class of Markov chains associated to the ‘leaves' in random recursive trees and preferential attachment random graphs, as well as the ‘cherries’ in Yule trees. In particular, the method of proof, combining analytic and Dupuis–Ellis-type path arguments, allows for an explicit computation of the large deviation pressure.
This note explores the behaviour of the implied volatility of a European call option far from maturity. Asymptotic formulae are derived with precise control over the error terms. The connection between the asymptotic implied volatility and the cumulant generating function of the logarithm of the underlying stock price is discussed in detail and illustrated by examples.
Convolutions of long-tailed and subexponential distributions play a major role in the analysis of many stochastic systems. We study these convolutions, proving some important new results through a simple and coherent approach, and also showing that the standard properties of such convolutions follow as easy consequences.
We study the tail behavior of the distribution of the sum of asymptotically independent risks whose marginal distributions belong to the maximal domain of attraction of the Gumbel distribution. We impose conditions on the distribution of the risks (X, Y) such that P(X + Y > x) ∼ (constant) P(X > x). With the further assumption of nonnegativity of the risks, the result is extended to more than two risks. We note a sufficient condition for a distribution to belong to both the maximal domain of attraction of the Gumbel distribution and the subexponential class. We provide examples of distributions which satisfy our assumptions. The examples include cases where the marginal distributions of X and Y are subexponential and also cases where they are not. In addition, the asymptotic behavior of linear combinations of such risks with positive coefficients is explored, leading to an approximate solution of an optimization problem which is applied to portfolio design.
In this paper we introduce the transformed two-parameter Poisson–Dirichlet distribution on the ordered infinite simplex. Furthermore, we prove the central limit theorem related to this distribution when both the mutation rate θ and the selection rate σ become large in a specified manner. As a consequence, we find that the properly scaled homozygosities have asymptotical normal behavior. In particular, there is a certain phase transition with the limit depending on the relative strength of σ and θ.
In Lyons, Pemantle and Peres (1995), a martingale change of measure method was developed in order to give an alternative proof of the Kesten–Stigum L log L theorem for single-type branching processes. Later, this method was extended to prove the L log L theorem for multiple- and general multiple-type branching processes in Biggins and Kyprianou (2004), Kurtz et al. (1997), and Lyons (1997). In this paper we extend this method to a class of superdiffusions and establish a Kesten–Stigum L log L type theorem for superdiffusions. One of our main tools is a spine decomposition of superdiffusions, which is a modification of the one in Englander and Kyprianou (2004).
Consider an urn model whose replacement matrix is triangular, has all nonnegative entries, and the row sums are all equal to 1. We obtain strong laws for the counts of balls corresponding to each color. The scalings for these laws depend on the diagonal elements of a rearranged replacement matrix. We use these strong laws to study further behavior of certain three-color urn models.
We show that, contrary to common wisdom, the cumulative input process in a fluid queue with cluster Poisson arrivals can converge, in the slow growth regime, to a fractional Brownian motion, and not to a Lévy stable motion. This emphasizes the lack of robustness of Lévy stable motions as ‘birds-eye’ descriptions of the traffic in communication networks.
In this paper we refine a Poisson limit theorem of Gnedenko and Kolmogorov (1954): we determine the error order of a Poisson approximation for sums of asymptotically negligible integer-valued random variables that converge in distribution to the Poisson law. As an application of our results, we investigate the case of the coupon collector's problem when the distribution of the collector's waiting time is asymptotically Poisson.