To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show how the extremal behavior of d-variate Archimedean copulas can be deduced from their stochastic representation as the survival dependence structure of an ℓ1-symmetric distribution (see McNeil and Nešlehová (2009)). We show that the extremal behavior of the radial part of the representation is determined by its Williamson d-transform. This leads in turn to simple proofs and extensions of recent results characterizing the domain of attraction of Archimedean copulas, their upper and lower tail-dependence indices, as well as their associated threshold copulas. We outline some of the practical implications of their results for the construction of Archimedean models with specific tail behavior and give counterexamples of Archimedean copulas whose coefficient of lower tail dependence does not exist.
We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate θ, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have independent and identically distributed lifetime durations (nonnecessarily exponential) during which they give birth independently at a constant rate b. First, using spine decomposition, we relax previously known assumptions required for almost-sure convergence of the total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector (P1, P2,…) of relative abundances of surviving families converges almost surely. In the first model, the limit is the GEM distribution with parameter θ / b.
We consider a generalized form of the coupon collection problem in which a random number, S, of balls is drawn at each stage from an urn initially containing n white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the kn draws? Our analysis is asymptotic as n → ∞. We concentrate on the case when kn draws are made, where kn / n → ∞ (the superlinear case), although we sketch known results for other ranges of kn. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.
We consider the sample paths of the order statistics of independent and identically distributed random variables with common distribution function F. If F is strictly increasing but possibly having discontinuities, we prove that the sample paths of the order statistics satisfy the large deviation principle in the Skorokhod M1 topology. Sanov's theorem is deduced in the Skorokhod M'1 topology as a corollary to this result. A number of illustrative examples are presented, including applications to the sample paths of trimmed means and Hill plots.
Uniform large deviation principles for positive functionals of all equivalent types of infinite-dimensional Brownian motions acting together with a Poisson random measure are established. The core of our approach is a variational representation formula, which for an infinite sequence of independent and identically distributed real Brownian motions and a Poisson random measure was shown in [A. Budhiraja, P. Dupuis and V. Maroulas, Variational representations for continuous time processes. Ann. Inst. H. Poincaré (to appear)].
We propose a model for the presence/absence of a population in a collection of habitat patches. This model assumes that colonisation and extinction of the patches occur as distinct phases. Importantly, the local extinction probabilities are allowed to vary between patches. This permits an investigation of the effect of habitat degradation on the persistence of the population. The limiting behaviour of the model is examined as the number of habitat patches increases to ∞. This is done in the case where the number of patches and the initial number of occupied patches increase at the same rate, and for the case where the initial number of occupied patches remains fixed.
The point process of vertices of an iteration infinitely divisible or, more specifically, of an iteration stable random tessellation in the Euclidean plane is considered. We explicitly determine its covariance measure and its pair-correlation function, as well as the cross-covariance measure and the cross-correlation function of the vertex point process and the random length measure in the general nonstationary regime. We also give special formulae in the stationary and isotropic setting. Exact formulae are given for vertex count variances in compact and convex sampling windows, and asymptotic relations are derived. Our results are then compared with those for a Poisson line tessellation having the same length density parameter. Moreover, a functional central limit theorem for the joint process of suitably rescaled total edge counts and edge lengths is established with the process (ξ, tξ), t > 0, arising in the limit, where ξ is a centered Gaussian variable with explicitly known variance.
In this paper we consider the stochastic analysis of information ranking algorithms of large interconnected data sets, e.g. Google's PageRank algorithm for ranking pages on the World Wide Web. The stochastic formulation of the problem results in an equation of the form where N, Q, {Ri}i≥1, and {C, Ci}i≥1 are independent nonnegative random variables, the {C, Ci}i≥1 are identically distributed, and the {Ri}i≥1 are independent copies of stands for equality in distribution. We study the asymptotic properties of the distribution of R that, in the context of PageRank, represents the frequencies of highly ranked pages. The preceding equation is interesting in its own right since it belongs to a more general class of weighted branching processes that have been found to be useful in the analysis of many other algorithms. Our first main result shows that if ENE[Cα] = 1, α > 0, and Q, N satisfy additional moment conditions, then R has a power law distribution of index α. This result is obtained using a new approach based on an extension of Goldie's (1991) implicit renewal theorem. Furthermore, when N is regularly varying of index α > 1, ENE[Cα] < 1, and Q, C have higher moments than α, then the distributions of R and N are tail equivalent. The latter result is derived via a novel sample path large deviation method for recursive random sums. Similarly, we characterize the situation when the distribution of R is determined by the tail of Q. The preceding approaches may be of independent interest, as they can be used for analyzing other functionals on trees. We also briefly discuss the engineering implications of our results.
Melamed's theorem states that, for a Jackson queueing network, the equilibrium flow along a link follows a Poisson distribution if and only if no customers can travel along the link more than once. Barbour and Brown (1996) considered the Poisson approximate version of Melamed's theorem by allowing the customers a small probability p of travelling along the link more than once. In this note, we prove that the customer flow process is a Poisson cluster process and then establish a general approximate version of Melamed's theorem that accommodates all possible cases of 0 ≤ p < 1.
Inspired by methods of queueing theory, we propose a Markov model for the spread of viruses in an open population with an exogenous flow of infectives. We apply it to the diffusion of AIDS and hepatitis C diseases among drug users. From a mathematical point of view, the difference between the two viruses is shown in two parameters: the probability of curing the disease (which is 0 for AIDS but positive for hepatitis C) and the infection probability, which seems to be much higher for hepatitis. This model bears some resemblance to the M/M/∞ queueing system and is thus rather different from the models based on branching processes commonly used in the epidemiological literature. We carry out an asymptotic analysis (large initial population) and show that the Markov process is close to the solution of a nonlinear autonomous differential system. We prove both a law of large numbers and a functional central limit theorem to determine the speed of convergence towards the limiting system. The deterministic system itself converges, as time tends to ∞, to an equilibrium point. We then show that the sequence of stationary probabilities of the stochastic models shrinks to a Dirac measure at this point. This means that in a large population and for long-term analysis, we may replace the individual-based microscopic stochastic model with the macroscopic deterministic system without loss of precision. Moreover, we show how to compute the sensitivity of any functional of the Markov process with respect to a slight variation of any parameter of the model. This approach is applied to the spread of diseases among drug users, but could be applied to many other case studies in epidemiology.
We show that shortfall risks of American options in a sequence of multinomial approximations of the multidimensional Black-Scholes (BS) market converge to the corresponding quantities for similar American options in the multidimensional BS market with path-dependent payoffs. In comparison to previous papers we consider the multiassets case for which we use the weak convergence approach.
We consider spatial stochastic models, which can be applied to, e.g. telecommunication networks with two hierarchy levels. In particular, we consider Cox processes XL and XH concentrated on the edge set T(1) of a random tessellation T, where the points XL,n and XH,n of XL and XH can describe the locations of low-level and high-level network components, respectively, and T(1) the underlying infrastructure of the network, such as road systems, railways, etc. Furthermore, each point XL,n of XL is marked with the shortest path along the edges of T to the nearest (in the Euclidean sense) point of XH. We investigate the typical shortest path length C* of the resulting marked point process, which is an important characteristic in, e.g. performance analysis and planning of telecommunication networks. In particular, we show that the distribution of C* converges to simple parametric limit distributions if a scaling factor κ converges to 0 or ∞. This can be used to approximate the density of C* by analytical formulae for a wide range of κ.
A sequence of random variables is said to be extended negatively dependent (END) if the tails of its finite-dimensional distributions in the lower-left and upper-right corners are dominated by a multiple of the tails of the corresponding finite-dimensional distributions of a sequence of independent random variables with the same marginal distributions. The goal of this paper is to establish the strong law of large numbers for a sequence of END and identically distributed random variables. In doing so we derive some new inequalities of large deviation type for the sums of END and identically distributed random variables being suitably truncated. We also show applications of our main result to risk theory and renewal theory.
Kipnis and Varadhan (1986) showed that, for an additive functional, Sn say, of a reversible Markov chain, the condition E[Sn2] / n → κ ∈ (0, ∞) implies the convergence of the conditional distribution of Sn / √E[Sn2], given the starting point, to the standard normal distribution. We revisit this question under the weaker condition, E[Sn2] = nl(n), where l is a slowly varying function. It is shown by example that the conditional distributions of Sn / √E[Sn2] need not converge to the standard normal distribution in this case; and sufficient conditions for convergence to a (possibly nonstandard) normal distribution are developed.
In this paper we consider a generalized coupon collection problem in which a customer repeatedly buys a random number of distinct coupons in order to gather a large number n of available coupons. We address the following question: How many different coupons are collected after k = kn draws, as n → ∞? We identify three phases of kn: the sublinear, the linear, and the superlinear. In the growing sublinear phase we see o(n) different coupons, and, with true randomness in the number of purchases, under the appropriate centering and scaling, a Gaussian distribution is obtained across the entire phase. However, if the number of purchases is fixed, a degeneracy arises and normality holds only at the higher end of this phase. If the number of purchases have a fixed range, the small number of different coupons collected in the sublinear phase is upgraded to a number in need of centering and scaling to become normally distributed in the linear phase with a different normal distribution of the type that appears in the usual central limit theorems. The Gaussian results are obtained via martingale theory. We say a few words in passing about the high probability of collecting nearly all the coupons in the superlinear phase. It is our aim to present the results in a way that explores the critical transition at the ‘seam line’ between different Gaussian phases, and between these phases and other nonnormal phases.
For random variables with values on binary metric trees, the definition of the expected value can be generalized to the notion of a barycenter. To estimate the barycenter from tree-valued data, the so-called inductive mean is constructed recursively using the weighted interpolation between the current mean and a new data point. We show the strong consistency of the inductive mean, but also that it, somewhat peculiarly, converges towards the true barycenter with different rates, and asymptotic distributions depending on the small variations of the underlying distribution.
Let {Xn, n ≥ 1} be an independent, identically distributed random sequence with each Xn having the general error distribution. In this paper we derive the exact uniform convergence rate of the distribution of the maximum to its extreme value limit.
The Ehrenfest urn is a model for the diffusion of gases between two chambers. Classic research deals with this system as a Markovian model with a fixed number of balls, and derives the steady-state behavior as a binomial distribution (which can be approximated by a normal distribution). We study the gradual change for an urn containing n (a very large number) balls from the initial condition to the steady state. We look at the status of the urn after kn draws. We identify three phases of kn: the growing sublinear, the linear, and the superlinear. In the growing sublinear phase the amount of gas in each chamber is normally distributed, with parameters that are influenced by the initial conditions. In the linear phase a different normal distribution applies, in which the influence of the initial conditions is attenuated. The steady state is not a good approximation until a certain superlinear amount of time has elapsed. At the superlinear stage the mix is nearly perfect, with a nearly perfect symmetrical normal distribution in which the effect of the initial conditions is completely washed away. We give interpretations for how the results in different phases conjoin at the ‘seam lines’. In fact, these Gaussian phases are all manifestations of one master theorem. The results are obtained via martingale theory.
A random intersection graph G(n, m, p) is defined on a set V of n vertices. There is an auxiliary set W consisting of m objects, and each vertex v ∈ V is assigned a random subset of objects Wv ⊆ W such that w ∈ Wv with probability p, independently for all v ∈ V and all w ∈ W. Given two vertices v1, v2 ∈ V, we set v1 ∼ v2 if and only if Wv1 ∩ Wv2 ≠ ∅. We use Stein's method to obtain an upper bound on the total variation distance between the distribution of the number of h-cliques in G(n, m, p) and a related Poisson distribution for any fixed integer h.
The topic of the present paper is a generalized St Petersburg game in which the distribution of the payoff X is given by P(X =sr(k-1)/α) = pqk-1,k = 1, 2,…, where p + q = 1, s = 1 / p,r = 1 / q, and 0 < α ≤ 1. For the case in which α = 1, we extend Feller's classical weak law and Martin-Löf's theorem on convergence in distribution along the 2n-subsequence. The analog for 0 < α < 1 turns out to converge in distribution to an asymmetric stable law with index α. Finally, some limit theorems for polynomial and geometric size total gains, as well as for extremes, are given.