We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inspired by methods of queueing theory, we propose a Markov model for the spread of viruses in an open population with an exogenous flow of infectives. We apply it to the diffusion of AIDS and hepatitis C diseases among drug users. From a mathematical point of view, the difference between the two viruses is shown in two parameters: the probability of curing the disease (which is 0 for AIDS but positive for hepatitis C) and the infection probability, which seems to be much higher for hepatitis. This model bears some resemblance to the M/M/∞ queueing system and is thus rather different from the models based on branching processes commonly used in the epidemiological literature. We carry out an asymptotic analysis (large initial population) and show that the Markov process is close to the solution of a nonlinear autonomous differential system. We prove both a law of large numbers and a functional central limit theorem to determine the speed of convergence towards the limiting system. The deterministic system itself converges, as time tends to ∞, to an equilibrium point. We then show that the sequence of stationary probabilities of the stochastic models shrinks to a Dirac measure at this point. This means that in a large population and for long-term analysis, we may replace the individual-based microscopic stochastic model with the macroscopic deterministic system without loss of precision. Moreover, we show how to compute the sensitivity of any functional of the Markov process with respect to a slight variation of any parameter of the model. This approach is applied to the spread of diseases among drug users, but could be applied to many other case studies in epidemiology.
We show that shortfall risks of American options in a sequence of multinomial approximations of the multidimensional Black-Scholes (BS) market converge to the corresponding quantities for similar American options in the multidimensional BS market with path-dependent payoffs. In comparison to previous papers we consider the multiassets case for which we use the weak convergence approach.
We consider spatial stochastic models, which can be applied to, e.g. telecommunication networks with two hierarchy levels. In particular, we consider Cox processes XL and XH concentrated on the edge set T(1) of a random tessellation T, where the points XL,n and XH,n of XL and XH can describe the locations of low-level and high-level network components, respectively, and T(1) the underlying infrastructure of the network, such as road systems, railways, etc. Furthermore, each point XL,n of XL is marked with the shortest path along the edges of T to the nearest (in the Euclidean sense) point of XH. We investigate the typical shortest path length C* of the resulting marked point process, which is an important characteristic in, e.g. performance analysis and planning of telecommunication networks. In particular, we show that the distribution of C* converges to simple parametric limit distributions if a scaling factor κ converges to 0 or ∞. This can be used to approximate the density of C* by analytical formulae for a wide range of κ.
A sequence of random variables is said to be extended negatively dependent (END) if the tails of its finite-dimensional distributions in the lower-left and upper-right corners are dominated by a multiple of the tails of the corresponding finite-dimensional distributions of a sequence of independent random variables with the same marginal distributions. The goal of this paper is to establish the strong law of large numbers for a sequence of END and identically distributed random variables. In doing so we derive some new inequalities of large deviation type for the sums of END and identically distributed random variables being suitably truncated. We also show applications of our main result to risk theory and renewal theory.
Kipnis and Varadhan (1986) showed that, for an additive functional, Sn say, of a reversible Markov chain, the condition E[Sn2] / n → κ ∈ (0, ∞) implies the convergence of the conditional distribution of Sn / √E[Sn2], given the starting point, to the standard normal distribution. We revisit this question under the weaker condition, E[Sn2] = nl(n), where l is a slowly varying function. It is shown by example that the conditional distributions of Sn / √E[Sn2] need not converge to the standard normal distribution in this case; and sufficient conditions for convergence to a (possibly nonstandard) normal distribution are developed.
In this paper we consider a generalized coupon collection problem in which a customer repeatedly buys a random number of distinct coupons in order to gather a large number n of available coupons. We address the following question: How many different coupons are collected after k = kn draws, as n → ∞? We identify three phases of kn: the sublinear, the linear, and the superlinear. In the growing sublinear phase we see o(n) different coupons, and, with true randomness in the number of purchases, under the appropriate centering and scaling, a Gaussian distribution is obtained across the entire phase. However, if the number of purchases is fixed, a degeneracy arises and normality holds only at the higher end of this phase. If the number of purchases have a fixed range, the small number of different coupons collected in the sublinear phase is upgraded to a number in need of centering and scaling to become normally distributed in the linear phase with a different normal distribution of the type that appears in the usual central limit theorems. The Gaussian results are obtained via martingale theory. We say a few words in passing about the high probability of collecting nearly all the coupons in the superlinear phase. It is our aim to present the results in a way that explores the critical transition at the ‘seam line’ between different Gaussian phases, and between these phases and other nonnormal phases.
For random variables with values on binary metric trees, the definition of the expected value can be generalized to the notion of a barycenter. To estimate the barycenter from tree-valued data, the so-called inductive mean is constructed recursively using the weighted interpolation between the current mean and a new data point. We show the strong consistency of the inductive mean, but also that it, somewhat peculiarly, converges towards the true barycenter with different rates, and asymptotic distributions depending on the small variations of the underlying distribution.
Let {Xn, n ≥ 1} be an independent, identically distributed random sequence with each Xn having the general error distribution. In this paper we derive the exact uniform convergence rate of the distribution of the maximum to its extreme value limit.
The Ehrenfest urn is a model for the diffusion of gases between two chambers. Classic research deals with this system as a Markovian model with a fixed number of balls, and derives the steady-state behavior as a binomial distribution (which can be approximated by a normal distribution). We study the gradual change for an urn containing n (a very large number) balls from the initial condition to the steady state. We look at the status of the urn after kn draws. We identify three phases of kn: the growing sublinear, the linear, and the superlinear. In the growing sublinear phase the amount of gas in each chamber is normally distributed, with parameters that are influenced by the initial conditions. In the linear phase a different normal distribution applies, in which the influence of the initial conditions is attenuated. The steady state is not a good approximation until a certain superlinear amount of time has elapsed. At the superlinear stage the mix is nearly perfect, with a nearly perfect symmetrical normal distribution in which the effect of the initial conditions is completely washed away. We give interpretations for how the results in different phases conjoin at the ‘seam lines’. In fact, these Gaussian phases are all manifestations of one master theorem. The results are obtained via martingale theory.
A random intersection graph G(n, m, p) is defined on a set V of n vertices. There is an auxiliary set W consisting of m objects, and each vertex v ∈ V is assigned a random subset of objects Wv ⊆ W such that w ∈ Wv with probability p, independently for all v ∈ V and all w ∈ W. Given two vertices v1, v2 ∈ V, we set v1 ∼ v2 if and only if Wv1 ∩ Wv2 ≠ ∅. We use Stein's method to obtain an upper bound on the total variation distance between the distribution of the number of h-cliques in G(n, m, p) and a related Poisson distribution for any fixed integer h.
The topic of the present paper is a generalized St Petersburg game in which the distribution of the payoff X is given by P(X =
sr(k-1)/α) = pqk-1,
k = 1, 2,…, where p + q = 1, s = 1 / p,
r = 1 / q, and 0 < α ≤ 1. For the case in which α = 1, we extend Feller's classical weak law and Martin-Löf's theorem on convergence in distribution along the 2n-subsequence. The analog for 0 < α < 1 turns out to converge in distribution to an asymmetric stable law with index α. Finally, some limit theorems for polynomial and geometric size total gains, as well as for extremes, are given.
In this paper we establish limit theorems for a class of stochastic hybrid systems (continuous deterministic dynamics coupled with jump Markov processes) in the fluid limit (small jumps at high frequency), thus extending known results for jump Markov processes. We prove a functional law of large numbers with exponential convergence speed, derive a diffusion approximation, and establish a functional central limit theorem. We apply these results to neuron models with stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to the deterministic model. In terms of neural coding, we apply our central limit theorems to numerically estimate the impact of channel noise both on frequency and spike timing coding.
We introduce a formal limit, which we refer to as a fluid limit, of scaled stochastic models for a cache managed with the least-recently-used algorithm when requests are issued according to general stochastic point processes. We define our fluid limit as a superposition of dependent replications of the original system with smaller item sizes when the number of replications approaches ∞. We derive the average probability that a requested item is not in a cache (average miss probability) in the fluid limit. We show that, when requests follow inhomogeneous Poisson processes, the average miss probability in the fluid limit closely approximates that in the original system. Also, we compare the asymptotic characteristics, as the cache size approaches ∞, of the average miss probability in the fluid limit to those in the original system.
Suppose that, under the action of gravity, liquid drains through the unit d-cube via a minimal-length network of channels constrained to pass through random sites and to flow with nonnegative component in one of the canonical orthogonal basis directions of Rd, d ≥ 2. The resulting network is a version of the so-called minimal directed spanning tree. We give laws of large numbers and convergence in distribution results on the large-sample asymptotic behaviour of the total power-weighted edge length of the network on uniform random points in (0, 1)d. The distributional results exhibit a weight-dependent phase transition between Gaussian and boundary-effect-derived distributions. These boundary contributions are characterized in terms of limits of the so-called on-line nearest-neighbour graph, a natural model of spatial network evolution, for which we also present some new results. Also, we give a convergence in distribution result for the length of the longest edge in the drainage network; when d = 2, the limit is expressed in terms of Dickman-type variables.
In this paper we study the asymptotic normality of discrete-time Markov control processes in Borel spaces, with possibly unbounded cost. Under suitable hypotheses, we show that the cost sequence is asymptotically normal. As a special case, we obtain a central limit theorem for (noncontrolled) Markov chains.
The conditions in the strong law of large numbers given by Li et al. [‘A strong law for B-valued arrays’, Proc. Amer. Math. Soc.123 (1995), 3205–3212] for B-valued arrays are relaxed. Further, the compact logarithm rate law and the bounded logarithm rate law are discussed for the moving average process based on an array of random elements.
In this paper we study the stability of queueing systems with impatient customers and a single server operating under a FIFO (first-in-first-out) discipline. We first give a sufficient condition for the existence of a stationary workload in the case of impatience until the beginning of service. We then provide a weaker condition of existence on an enriched probability space using the theory of Anantharam et al. (1997), (1999). The case of impatience until the end of service is also investigated.
Consider the following classical problem in ad-hoc networks. Suppose that n devices are distributed uniformly at random in a given region. Each device is allowed to choose its own transmission radius, and two devices can communicate if and only if they are within the transmission radius of each other. The aim is to (quickly) establish a connected network of low average and maximum degree. In this paper we present the first efficient distributed protocols that, in poly-logarithmically many rounds and with high probability, set up a connected network with O(1) average degree and O(log n) maximum degree. Our algorithms are based on the following result, which is a nontrivial consequence of classical percolation theory. Suppose that each device sets up its transmission radius in order to reach the K closest devices. There exists a universal constant K (independent of n) such that, with high probability, there will be a unique giant component (i.e. a connected component of size Θ(n)). Furthermore, all remaining components will be of size O(log2n). This leads to an efficient distributed probabilistic test for membership in the giant component, which can be used in a second phase to achieve full connectivity.
Expectations of unbounded functions of dependent nonnegative integer-valued random variables are approximated by the expectations of the functions of independent copies of these random variables. The Lindeberg method is used.
In Reinert and Röllin (2009) a new approach - called the ‘embedding method’ - was introduced, which allows us to make use of exchangeable pairs for normal and multivariate normal approximations with Stein's method in cases where the corresponding couplings do not satisfy a certain linearity condition. The key idea is to embed the problem into a higher-dimensional space in such a way that the linearity condition is then satisfied. Here we apply the embedding to U-statistics as well as to subgraph counts in random graphs.