We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the problem of finding an optimal betting strategy for a house-banked casino card game that is played for several coups before reshuffling. The sampling without replacement makes it possible to take advantage of the changes in the expected value as the deck is depleted, making large bets when the game is advantageous. Using such a strategy, which is easy to implement, is known as card counting. We consider the case of a large number of decks, making an approximation to continuous time possible. A limit law of the return process is found and the optimal card counting strategy is derived. This continuous-time strategy is shown to be a natural analog of the discrete-time strategy where the so-called effects of removal are replaced by the infinitesimal generator of the card process.
In this paper, a moderate deviation theorem for one-dimensional stable random walks in random scenery is proved. The proof relies on the analysis of maximum local times of stable random walks, and the comparison of moments between random walks in random scenery and self-intersection local times of the underlying random walks.
We develop techniques for computing the asymptotics of the first and second moments of the number TN of coupons that a collector has to buy in order to find all N existing different coupons as N → ∞. The probabilities (occurring frequencies) of the coupons can be quite arbitrary. From these asymptotics we obtain the leading behavior of the variance V[TN] of TN (see Theorems 3.1 and 4.4). Then, we combine our results with the general limit theorems of Neal in order to derive the limit distribution of TN (appropriately normalized), which, for a large class of probabilities, turns out to be the standard Gumbel distribution. We also give various illustrative examples.
In a random graph, counts for the number of vertices with given degrees will typically be dependent. We show via a multivariate normal and a Poisson process approximation that, for graphs which have independent edges, with a possibly inhomogeneous distribution, only when the degrees are large can we reasonably approximate the joint counts as independent. The proofs are based on Stein's method and the Stein-Chen method with a new size-biased coupling for such inhomogeneous random graphs, and, hence, bounds on the distributional distance are obtained. Finally, we illustrate that apparent (pseudo-)power-law-type behaviour can arise in such inhomogeneous networks despite not actually following a power-law degree distribution.
We study the bijection between binary Galton-Watson trees in continuous time and their exploration process, both in the subcritical and in the supercritical cases. We then take the limit over renormalized quantities, as the size of the population tends to ∞. We thus deduce Delmas' generalization of the second Ray-Knight theorem.
We use a change-of-variable formula in the framework of functions of bounded variation to derive an explicit formula for the Fourier transform of the level crossing function of shot noise processes with jumps. We illustrate the result in some examples and give some applications. In particular, it allows us to study the asymptotic behavior of the mean number of level crossings as the intensity of the Poisson point process of the shot noise process goes to infinity.
In the so-called Bernoulli model of the kinetic theory of gases, where (1) the particles are dimensionless points, (2) they are contained in a cube container, (3) no attractive or exterior force is acting on them, (4) there is no collision between the particles, (5) the collisions against the walls of the container are according to the law of elastic collision, we deduce from Newtonian mechanics two basic probabilistic limit laws about particle-counting. The first one is a global central limit theorem, and the second one is a local Poisson law. The key fact is that we can prove the “realistic limit”: first the time interval is fixed and the number of particles tends to infinity (where the density particle/volume remains a fixed constant), and then, in the second step, the time tends to infinity.
We investigate the Zagreb index, one of the topological indices, of random recursive trees in this paper. Through a recurrence equation, the first two moments of Zn, the Zagreb index of a random recursive tree of size n, are obtained. We also show that the random process {Zn − E[Zn], n ≥ 1} is a martingale. Then the asymptotic normality of the Zagreb index of a random recursive tree is given by an application of the martingale central limit theorem. Finally, two other topological indices are also discussed in passing.
We consider the Λ-coalescent processes with a positive frequency of singleton clusters. The class in focus covers, for instance, the beta(a, b)-coalescents with a > 1. We show that some large-sample properties of these processes can be derived by coupling the coalescent with an increasing Lévy process (subordinator), and by exploiting parallels with the theory of regenerative composition structures. In particular, we discuss the limit distributions of the absorption time and the number of collisions.
In this paper we investigate the relationship between the sampling formula and Laplace transform associated with the two-parameter Poisson-Dirichlet distribution. We conclude that they are equivalent to determining the corresponding infinite-dimensional distribution. With these tools, a central limit theorem is established associated with the infinitely-many-neutral-alleles model at any fixed time. We also obtain the probability generating function of random sampling from a generalized two-parameter diffusion process. At the end of the paper a selection case is considered.
Limit theorems are established for some functionals of the distances between two nodes in weighted random b-ary recursive trees. We consider the depth of the nth node and of a random node, the distance between two random nodes, the internal path length, and the Wiener index. As an application, these limit results imply, by an imbedding argument, corresponding limit theorems for further classes of random trees: plane-oriented recursive trees and random linear recursive trees.
Let x denote a vector of length q consisting of 0s and 1s. It can be interpreted as an ‘opinion’ comprised of a particular set of responses to a questionnaire consisting of q questions, each having {0, 1}-valued answers. Suppose that the questionnaire is answered by n individuals, thus providing n ‘opinions’. Probabilities of the answer 1 to each question can be, basically, arbitrary and different for different questions. Out of the 2q different opinions, what number, μn, would one expect to see in the sample? How many of these opinions, μn(k), will occur exactly k times? In this paper we give an asymptotic expression for μn / 2q and the limit for the ratios μn(k)/μn, when the number of questions q increases along with the sample size n so that n = λ2q, where λ is a constant. Let p(x) denote the probability of opinion x. The key step in proving the asymptotic results as indicated is the asymptotic analysis of the joint behaviour of the intensities np(x). For example, one of our results states that, under certain natural conditions, for any z > 0, ∑1{np(x) > z} = dnz−u,dn = o(2q).
In this paper we study a general class of population genetic models where the total population is divided into a number of subpopulations or types. Migration between subpopulations is fast. Extending the results of Nordborg and Krone (2002) and Sagitov and Jagers (2005), we prove, as the total population size N tends to ∞, weak convergence of the joint ancestry of a given sample of haploid individuals in the Skorokhod topology towards Kingman's coalescent with a constant change of time scale c. Our framework includes age-structured models, geographically structured models, and combinations thereof. We also allow each individual to have offspring in several subpopulations, with general dependency structures between the number of offspring of various types. As a byproduct, explicit expressions for the coalescent effective population size N/c are obtained.
We establish heavy-traffic limits for nearly deterministic queues, such as the G/D/n many-server queue. Since waiting times before starting service in the G/D/n queue are equivalent to waiting times in an associated Gn/D/1 model, where the Gn interarrival times are the sum of n consecutive interarrival times in the original model, we focus on the Gn/D/1 model and the generalization to Gn/Gn/1, where ‘cyclic thinning’ is applied to both the arrival and service processes. We establish different limits in two cases: (i) when (1 − ρn)√n → β as n → ∞ and (ii) when (1 − ρn)n → β as n → ∞, where ρn is the traffic intensity in model n. The nearly deterministic feature leads to interesting nonstandard scaling.
It is shown that the sample paths of Poisson shot noise with heavy-tailed semiexponential distributions satisfy a large deviation principle with a rate function that is insensitive to the shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do not depend on the shot shape.
In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn, n ≥ 0} and two observables, τ(∙) and V(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn, n ≥ 0} is a sequence of independent and identically distributed random variables.
We consider an insurance model, where the underlying point process is a Cox process. Using a martingale approach applied to diffusion processes, finite-time Lundberg inequalities are obtained. By change-of-measure techniques, Cramér–Lundberg approximations are derived.
This paper provides a simple proof for the fact that the hitting time to an infrequently visited subset for a one-dependent regenerative process converges weakly to an exponential distribution. Special cases are positive recurrent Harris chains and Harris processes. The paper further extends this class of limit theorems to ‘rewards’ that are cumulated to the hitting time of such a rare set.
We prove large deviation results for Minkowski sums Sn of independent and identically distributed random compact sets where we assume that the summands have a regularly varying distribution and finite expectation. The main focus is on random convex compact sets. The results confirm the heavy-tailed large deviation heuristics: ‘large’ values of the sum are essentially due to the ‘largest’ summand. These results extend those in Mikosch, Pawlas and Samorodnitsky (2011) for generally nonconvex sets, where we assumed that the normalization of Sn grows faster than n.
We consider the problem of estimating the probability that the maximum of a Gaussian process with negative mean and indexed by positive integers reaches a high level, say b. In great generality such a probability converges to 0 exponentially fast in a power of b. Under mild assumptions on the marginal distributions of the process and no assumption on the correlation structure, we develop an importance sampling procedure, called the target bridge sampler (TBS), which takes a polynomial (in b) number of function evaluations to achieve a small relative error. The procedure also yields samples of the underlying process conditioned on hitting b in finite time. In addition, we apply our method to the problem of estimating the tail of the maximum of a superposition of a large number, n, of independent Gaussian sources. In this situation TBS achieves a prescribed relative error with a bounded number of function evaluations as n ↗ ∞. A remarkable feature of TBS is that it is not based on exponential changes of measure. Our numerical experiments validate the performance indicated by our theoretical findings.