We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper gives easy proofs of conditional limit laws for the population size Zt of a critical Markov branching process whose offspring law is attracted to a stable law with index 1 + α, where 0 ≤ α ≤ 1. Conditioning events subsume the usual ones, and more general initial laws are considered. The case α = 0 is related to extreme value theory for the Gumbel law.
In this paper the theory of species sampling sequences is linked to the theory of conditionally identically distributed sequences in order to enlarge the set of species sampling sequences which are mathematically tractable. The conditional identity in distribution (see Berti, Pratelli and Rigo (2004)) is a new type of dependence for random variables, which generalizes the well-known notion of exchangeability. In this paper a class of random sequences, called generalized species sampling sequences, is defined and a condition to have conditional identity in distribution is given. Moreover, two types of generalized species sampling sequence that are conditionally identically distributed are introduced and studied: the generalized Poisson-Dirichlet sequence and the generalized Ottawa sequence. Some examples are discussed.
For a time series, a plot of sample covariances is a popular way to assess its dependence properties. In this paper we give a systematic characterization of the asymptotic behavior of sample covariances of long-memory linear processes. Central and noncentral limit theorems are obtained for sample covariances with bounded as well as unbounded lags. It is shown that the limiting distribution depends in a very interesting way on the strength of dependence, the heavy-tailedness of the innovations, and the magnitude of the lags.
We consider a variety of subtrees of various shapes lying on the fringe of a recursive tree. We prove that (under suitable normalization) the number of isomorphic images of a given fixed tree shape on the fringe of the recursive tree is asymptotically Gaussian. The parameters of the asymptotic normal distribution involve the shape functional of the given tree. The proof uses the contraction method.
In this paper we propose a framework that facilitates the study of large deviations for point processes based on stationary sequences with regularly varying tails. This framework allows us to keep track both of the magnitude of the extreme values of a process and the order in which these extreme values appear. Particular emphasis is put on (infinite) linear processes with random coefficients. The proposed framework provides a fairly complete description of the joint asymptotic behavior of the large values of the stationary sequence. We apply the general result on large deviations for point processes to derive the asymptotic decay of certain probabilities related to partial sum processes as well as ruin probabilities.
Consider a sequence of exchangeable or independent binary trials ordered on a line or on a circle. The statistics denoting the number of times an F-S string of length (at least)
k1 + k2, that is, (at least)
k1 failures followed by (at least) k2 successes in n such trials, are studied. The associated waiting time for the rth occurrence of an F-S string of length (at least) k1 + k2 in linearly ordered trials is also examined. Exact formulae, lower/upper bounds and approximations are derived for their distributions. Mean values and variances of the number of occurrences of F-S strings are given in exact formulae too. Particular exchangeable and independent sequences of binary random variables, used in applied research, combined with numerical examples clarify further the theoretical results.
We consider a nearly unstable, or near unit root, AR(1) process with regularly varying innovations. Two different approximations for the stationary distribution of such processes exist: a Gaussian approximation arising from the nearly unstable nature of the process and a heavy-tail approximation related to the tail asymptotics of the innovations. We combine these two approximations to obtain a new uniform approximation that is valid on the entire real line. As a corollary, we obtain a precise description of the regions where each of the Gaussian and heavy-tail approximations should be used.
We investigate the tail behaviour of the steady-state distribution of a stochastic recursion that generalises Lindley's recursion. This recursion arises in queueing systems with dependent interarrival and service times, and includes alternating service systems and carousel storage systems as special cases. We obtain precise tail asymptotics in three qualitatively different cases, and compare these with existing results for Lindley's recursion and for alternating service systems.
Let Kn denote the number of types of a sample of size n taken from an exchangeable coalescent process (Ξ-coalescent) with mutation. A distributional recursion for the sequence (Kn)n∈ℕ is derived. If the coalescent does not have proper frequencies, i.e. if the characterizing measure Ξ on the infinite simplex Δ does not have mass at 0 and satisfies ∫Δ ∣x∣Ξ(dx)/(x,x)<∞, where ∣x∣:=∑i=1∞xi and (x,x)≔∑i=1∞xi2 for x=(x1,x2,…)∈Δ, then Kn/n converges weakly as n→∞ to a limiting variable K that is characterized by an exponential integral of the subordinator associated with the coalescent process. For so-called simple measures Ξ satisfying ∫ΔΞ(d x)/(x,x)<∞, we characterize the distribution of K via a fixed-point equation.
The secretary problem for selecting one item so as to minimize its expected rank, based on observing the relative ranks only, is revisited. A simple suboptimal rule, which performs almost as well as the optimal rule, is given. The rule stops with the smallest i such that Ri≤ic/(n+1-i) for a given constant c, where Ri is the relative rank of the ith observation and n is the total number of items. This rule has added flexibility. A curtailed version thereof can be used to select an item with a given probability P, P<1. The rule can be used to select two or more items. The problem of selecting a fixed percentage, α, 0<α<1, of n, is also treated. Numerical results are included to illustrate the findings.
In Michel and Paroux (2003) the authors proposed a new proof of a well-known convergence result for the scaled elementary connected vacant component in the high intensity Boolean model towards the Crofton cell of the Poisson hyperplane process (see, e.g. Hall (1985)). In this paper we investigate the second-order term in this convergence when the two-dimensional Boolean model and the Poisson line process are coupled on the same probability space. We consider the particular case where the grains are discs with random radii. A precise coupling between the Boolean model and the Poisson line process is first established. A result of directional convergence in distribution for the difference of the two sets involved is then derived. Eventually, we show the convergence of the process, measuring the difference between the two random sets, once rescaled, as a function of the direction.
Let {Zt}t≥0 be a Lévy process with Lévy measure ν, and let τ(t)=∫0tr(u) d u, where {r(t)}t≥0 is a positive ergodic diffusion independent from Z. Based upon discrete observations of the time-changed Lévy process Xt≔Zτt during a time interval [0,T], we study the asymptotic properties of certain estimators of the parameters β(φ)≔∫φ(x)ν(d x), which in turn are well known to be the building blocks of several nonparametric methods such as sieve-based estimation and kernel estimation. Under uniform boundedness of the second moments of r and conditions on φ necessary for the standard short-term ergodic property limt→ 0 E φ(Zt)/t = β(φ) to hold, consistency and asymptotic normality of the proposed estimators are ensured when the time horizon T increases in such a way that the sampling frequency is high enough relative to T.
We consider the two-dimensional version of a drainage network model introduced in Gangopadhyay, Roy and Sarkar (2004), and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed in Fontes, Isopi, Newman and Ravishankar (2002).
Let (Xi)i∈ℕ be a sequence of independent and identically distributed random variables with values in the set ℕ0
of nonnegative integers. Motivated by applications in enumerative combinatorics and analysis of algorithms we investigate the number of gaps and the length of the longest gap in the set {X1,…,Xn} of the first n values. We obtain necessary and sufficient conditions in terms of the tail sequence (qk)k∈ℕ0,
qk=P(X1≥ k), for the gaps to vanish asymptotically as n→∞: these are ∑k=0∞qk+1/qk <∞ and limk→∞qk+1/qk=0 for convergence almost surely and convergence in probability, respectively. We further show that the length of the longest gap tends to ∞ in probability if qk+1/qk→ 1. For the family of geometric distributions, which can be regarded as the borderline case between the light-tailed and the heavy-tailed situations and which is also of particular interest in applications, we study the distribution of the length of the longest gap, using a construction based on the Sukhatme–Rényi representation of exponential order statistics to resolve the asymptotic distributional periodicities.
The waste-recycling Monte Carlo (WRMC) algorithm introduced by physicists is a modification of the (multi-proposal) Metropolis–Hastings algorithm, which makes use of all the proposals in the empirical mean, whereas the standard (multi-proposal) Metropolis–Hastings algorithm uses only the accepted proposals. In this paper we extend the WRMC algorithm to a general control variate technique and exhibit the optimal choice of the control variate in terms of the asymptotic variance. We also give an example which shows that, in contradiction to the intuition of physicists, the WRMC algorithm can have an asymptotic variance larger than that of the Metropolis–Hastings algorithm. However, in the particular case of the Metropolis–Hastings algorithm called the Boltzmann algorithm, we prove that the WRMC algorithm is asymptotically better than the Metropolis–Hastings algorithm. This last property is also true for the multi-proposal Metropolis–Hastings algorithm. In this last framework we consider a linear parametric generalization of WRMC, and we propose an estimator of the explicit optimal parameter using the proposals.
We derive a moderate deviation principle for word counts (which is extended to counts of multiple patterns) in biological sequences under different models: independent and identically distributed letters, homogeneous Markov chains of order 1 and m, and, in view of the codon structure of DNA sequences, Markov chains with three different transition matrices. This enables us to approximate P-values for the number of word occurrences in DNA and protein sequences in a new manner.
Let X be a pure-jump subordinator (i.e. nondecreasing Lévy process with no drift) with infinite Lévy measure, let Xε be the sum of jumps not exceeding ε, and let µ(ε)=E[Xε(1)]. We study the question of weak convergence of Xε/µ(ε) as ε ↓0, in terms of the limit behavior of µ(ε)/ε. The most interesting case reduces to the weak convergence of Xε/ε to a subordinator whose marginals are generalized Dickman distributions; we give some necessary and sufficient conditions for this to hold. For a certain significant class of subordinators for which the latter convergence holds, and whose most prominent representative is the gamma process, we give some detailed analysis regarding the convergence quality (in particular, in the context of approximating X itself). This paper completes, in some respects, the study made by Asmussen and Rosiński (2001).
In this paper we examine the extremal tail probabilities of moving sums in a marked Poisson random field. These sums are computed by adding up the weighted occurrences of events lying within a scanning set of fixed shape and size. We also provide an alternative representation of the constants of the asymptotic formulae in terms of the occupation measure of the conditional local random field at zero, and extend these representations to the constants of asymptotic tail probabilities of Gaussian random fields.
We prove a central limit theorem for the sequence of random compositions of a two-color randomly reinforced urn. As a consequence, we are able to show that the distribution of the urn limit composition has no point masses.
In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after the nth draw, for large n.