We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The upper tail behaviour is explored for a stopped random product ∏j=1NXj, where the factors are positive and independent and identically distributed, and N is the first time one of the factors occupies a subset of the positive reals. This structure is motivated by a heavy-tailed analogue of the factorial n!, called the factoid of n. Properties of the factoid suggested by computer explorations are shown to be valid. Two topics about the determination of the Zipf exponent in the rank-size law for city sizes are discussed.
In this paper, a fourth moment bound for partial sums of functionals of strongly ergodic Markov chains is established. This type of inequality plays an important role in the study of the empirical process invariance principle. This inequality is specially adapted to the technique of Dehling, Durieu, and Volný (2008). The same moment bound can be proved for dynamical systems whose transfer operator has some spectral properties. Examples of applications are given.
In this paper we present a stability criterion for processor-sharing queues, in which the throughput may depend on the number of customers in the system (such as in the case of interferences between users). Such a system is represented by a point measure-valued stochastic recursion keeping track of the remaining processing times of the customers.
This paper is devoted to the study of some asymptotic behaviors of Poisson-Voronoi tessellation in the Euclidean space as the space dimension tends to ∞. We consider a family of homogeneous Poisson-Voronoi tessellations with constant intensity λ in Euclidean spaces of dimensions n = 1, 2, 3, …. First we use the Blaschke-Petkantschin formula to prove that the variance of the volume of the typical cell tends to 0 exponentially in dimension. It is also shown that the volume of intersection of the typical cell with the co-centered ball of volume u converges in distribution to the constant λ−1(1 − e−λu). Next we consider the linear contact distribution function of the Poisson-Voronoi tessellation and compute the limit when the space dimension goes to ∞. As a by-product, the chord length distribution and the geometric covariogram of the typical cell are obtained in the limit.
We study a collector's problem with K renewal arrival processes for different type items, where the objective is to collect complete sets. In particular, we derive the asymptotic distribution of the sequence of interarrival times between set completions.
We study a continuous-time random walk on the d-dimensional lattice, subject to a drift and an attraction to large clusters of a subcritical Bernoulli site percolation. We find two distinct regimes: a ballistic one, and a subballistic one taking place when the attraction is strong enough. We identify the speed in the former case, and the algebraic rate of escape in the latter case. Finally, we discuss the diffusive behavior in the case of zero drift and weak attraction.
In this paper a limit theorem is proved that establishes conditions under which the distribution of the difference between the size of the initial event in a random sequence, modeled as a finite point process, and the largest subsequent event approaches a limiting form independent of the size of the initial event. The underlying assumptions are that the sizes of the individual events follow an exponential distribution, that the expected total number of events increases exponentially with the size of the initial event, and that the structure of the sequence approximates that of a Poisson process. Particular cases to which the results apply include sequences of independent and identically distributed exponential variables, and the epidemic-type aftershock (ETAS) branching process model in the subcritical case. In all these cases the form of the limit distribution is shown to be that of a double exponential (type-I extreme value distribution). In sampling from a family of aftershock sequences, with possibly different underlying parameters, the limit distribution is a mixture of such double exponential distributions. The conditions for the simple limit to exist relate to the approximation of the distribution of the number of events by a Poisson distribution. One such condition requires the coefficient of variation (ratio of standard deviation to mean) of the number of events to converge to 0 as the mean increases. The results provide a statistical background to Båth's law in seismology, which asserts that in an aftershock sequence the magnitude of the main shock is commonly around 1.2 units higher than the magnitude of the largest aftershock.
Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅1 and its induced Wasserstein metric d̅2 for point process distributions are given, including examples of useful d̅1-Lipschitz continuous functions, d̅2 upper bounds for the Poisson process approximation, and d̅2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅1 in applications.
This paper is concerned with the finiteness and large-time behaviour of moments of the overshoot and undershoot of a high level, and of their moment generating functions (MGFs), for a Lévy process which drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process. Results of Klüppelberg, Kyprianou, and Maller (2004) and Doney and Kyprianou (2006) for asymptotic overshoot and undershoot distributions in the class of Lévy processes with convolution equivalent canonical measures are shown to have moment and MGF convergence extensions.
Coupons are collected one at a time from a population containing n distinct types of coupon. The process is repeated until all n coupons have been collected and the total number of draws, Y, from the population is recorded. It is assumed that the draws from the population are independent and identically distributed (draws with replacement) according to a probability distribution X with the probability that a type-i coupon is drawn being P(X = i). The special case where each type of coupon is equally likely to be drawn from the population is the classic coupon collector problem. We consider the asymptotic distribution Y (appropriately normalized) as the number of coupons n → ∞ under general assumptions upon the asymptotic distribution of X. The results are proved by studying the total number of coupons, W(t), not collected in t draws from the population and noting that P(Y ≤ t) = P(W(t) = 0). Two normalizations of Y are considered, the choice of normalization depending upon whether or not a suitable Poisson limit exists for W(t). Finally, extensions to the K-coupon collector problem and the birthday problem are given.
We establish a functional large deviation principle and a functional moderate deviation principle for Markov-modulated risk models with reinsurance by constructing an exponential martingale approach. Lundberg's estimate of the ruin time is also presented.
We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.
In this paper we consider a compound Poisson risk model where the insurer earns credit interest at a constant rate if the surplus is positive and pays out debit interest at another constant rate if the surplus is negative. Absolute ruin occurs at the moment when the surplus first drops below a critical value (a negative constant). We study the asymptotic properties of the absolute ruin probability of this model. First we investigate the asymptotic behavior of the absolute ruin probability when the claim size distribution is light tailed. Then we study the case where the common distribution of claim sizes are heavy tailed.
We study the convergence of at-the-money implied volatilities to the spot volatility in a general model with a Brownian component and a jump component of finite variation. This result is a consequence of the robustness of the Black-Scholes formula and of the central limit theorem for martingales.
The distributions of the run occurrences for a sequence of independent and identically distributed (i.i.d.) experiments are usually obtained by combinatorial methods (see Balakrishnan and Koutras (2002, Chapter 5)) and the resulting formulae are often very tedious, while the distributions for non i.i.d. experiments are generally intractable. It is therefore of practical interest to find a suitable approximate model with reasonable approximation accuracy. In this paper we demonstrate that the negative binomial distribution is the most suitable approximate model for the number of k-runs: it outperforms the Poisson approximation, the general compound Poisson approximation as observed in Eichelsbacher and Roos (1999), and the translated Poisson approximation in Rollin (2005). In particular, its accuracy of approximation in terms of the total variation distance improves when the number of experiments increases, in the same way as the normal approximation improves in the Berry-Esseen theorem.
The paper deals with the asymptotic behavior of the bridge of a Gaussian process conditioned to stay in n fixed points at n fixed past instants. In particular, functional large deviation results are stated for small time. Several examples are considered: integrated or not fractional Brownian motions and m-fold integrated Brownian motion. As an application, the asymptotic behavior of the exit probability is studied and used for the practical purpose of the numerical computation, via Monte Carlo methods, of the hitting probability up to a given time of the unpinned process.
We consider sequences of closed cycles of exponential single-server nodes with a single bottleneck. We study the cycle time and the successive sojourn times of a customer when the population sizes go to infinity. Starting from old results on the mean cycle times under heavy traffic conditions, we prove a central limit theorem for the cycle time distribution. This result is then utilised to prove a weak convergence characteristic of the vector of a customer's successive sojourn times during a cycle for a sequence of networks with population sizes going to infinity. The limiting picture is a composition of a central limit theorem for the bottleneck node and an exponential limit for the unscaled sequences of sojourn times for the nonbottleneck nodes.
The mean time to extinction of a critical Galton-Watson process with initial population size k is shown to be asymptotically equivalent to two integral transforms: one involving the kth iterate of the probability generating function and one involving the generating function itself. Relating the growth of these transforms to the regular variation of their arguments, immediately connects statements involving the regular variation of the probability generating function, its iterates at 0, the quasistationary measures, their partial sums, and the limiting distribution of the time to extinction. In the critical case of finite variance we also give the growth of the mean time to extinction, conditioned on extinction occurring by time n.
For a linear random field (linear p-parameter stochastic process) generated by a dependent random field with zero mean and finite qth moments (q>2p), we give sufficient conditions that the linear random field converges weakly to a multiparameter standard Brownian motion if the corresponding dependent random field does so.
We describe the random meeting motion of a finite number of investors in markets with friction as a Markov pure-jump process with interactions. Using a sequence of these, we prove a functional law of large numbers relating the large motions with the finite market of the so-called continuum of agents.