To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a pure-jump subordinator (i.e. nondecreasing Lévy process with no drift) with continuous Lévy measure ν, we derive a formula for the distribution function Fs (x; t) at time t of the associated subordinator whose Lévy measure is the restriction of ν to (0,s]. It will be expressed in terms of ν and the marginal distribution function F (⋅; t) of the original process. A generalization concerning an arbitrary truncation of ν will follow. Under certain conditions, an analogous formula will be obtained for the nth derivative, ∂nFs (x; t) ∂ xn. The requirement that ν is continuous is shown to have no intrinsic meaning. A number of interesting results involving the size ordered jumps of subordinators will be derived. An appropriate approximation for the small jumps of a gamma process will be considered, leading to a revisiting of the generalized Dickman distribution.
The speed of extinction for some generalized Jiřina processes {Xn} is discussed. We first discuss the geometric speed. Under some mild conditions, the results reveal that the sequence {cn}, where c does not equal the pseudo-drift parameter at x = 0, cannot estimate the speed of extinction accurately. Then the general case is studied. We determine a group of sufficient conditions such that Xn/cn, with a suitable constant cn, converges almost surely as n → ∞ to a proper, nondegenerate random variable. The main tools used in this paper are exponent martingales and stochastic growth models.
Convergence in probability and central limit laws of bipower variation for Gaussian processes with stationary increments and for integrals with respect to such processes are derived. The main tools of the proofs are some recent powerful techniques of Wiener/Itô/Malliavin calculus for establishing limit laws, due to Nualart, Peccati, and others.
Let n points be chosen independently and uniformly in the unit cube [0,1]d, and suppose that each point is supplied with a mark, the marks being independent and identically distributed random variables independent of the location of the points. To each cube R contained in [0,1]d we associate its score defined as the sum of marks of all points contained in R. The scan statistic is defined as the maximum of taken over all cubes R contained in [0,1]d. We show that if the marks are nonlattice random variables with finite exponential moments, having negative mean and assuming positive values with nonzero probability, then the appropriately normalized distribution of the scan statistic converges as n → ∞ to the Gumbel distribution. We also prove a corresponding result for the scan statistic of a Lévy noise with negative mean. The more elementary cases of zero and positive mean are also considered.
The main goal of this paper is to provide asymptotic expansions for the numbers #{p≤x:pprime,sq(p)=k} for k close to ((q−1)/2)log qx, where sq(n) denotes the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential sums of the form (where the sum is restricted to p prime), for which we have to extend a recent result by the second two authors.
Let be a collection of n uniform, independent, and identically distributed points on the Cantor ternary set. We consider the asymptotics for the expected total edge length of the directed and undirected nearest-neighbor graph on We prove convergence to a constant of the rescaled expected total edge length of this random graph. The rescaling factor is a function of the fractal dimension and has a log-periodic, nonconstant behavior.
Mallows and Shepp (2008) developed the following necklace processes. Start with a necklace consisting of one white bead and one black bead, and insert, one at a time, under a deterministic rule, a white bead or a black bead between a randomly chosen adjacent pair. They studied the statistical properties of the number of white beads by investigating the nature of the moments and the expected number of gaps of given length between white beads. In this note we study the number of white beads via Pólya urns and give a classification of necklace processes for some general rules. Additionally, we discuss the number of runs, i.e. the number of consecutive same color beads, instead of the number of gaps.
We study a process where balls are repeatedly thrown into n boxes independently according to some probability distribution p. We start with n balls, and at each step, all balls landing in the same box are fused into a single ball; the process terminates when there is only one ball left (coalescence). Let c := ∑jpj2, the collision probability of two fixed balls. We show that the expected coalescence time is asymptotically 2c−1, under two constraints on p that exclude a thin set of distributions p. One of the constraints is c = o(ln−2n). This ln−2n is shown to be a threshold value: for c = ω(ln−2n), there exists p with c(p) = c such that the expected coalescence time far exceeds c−1. Connections to coalescent processes in population biology and theoretical computer science are discussed.
We study sample covariance matrices of the form W = (1 / n)CCT, where C is a k x n matrix with independent and identically distributed (i.i.d.) mean 0 entries. This is a generalization of the so-called Wishart matrices, where the entries of C are i.i.d. standard normal random variables. Such matrices arise in statistics as sample covariance matrices, and the high-dimensional case, when k is large, arises in the analysis of DNA experiments. We investigate the large deviation properties of the largest and smallest eigenvalues of W when either k is fixed and n → ∞ or kn → ∞ with kn = o(n / log log n), in the case where the squares of the i.i.d. entries have finite exponential moments. Previous results, proving almost sure limits of the eigenvalues, require only finite fourth moments. Our most explicit results for large k are for the case where the entries of C are ∓ 1 with equal probability. We relate the large deviation rate functions of the smallest and largest eigenvalues to the rate functions for i.i.d. standard normal entries of C. This case is of particular interest since it is related to the problem of decoding of a signal in a code-division multiple-access (CDMA) system arising in mobile communication systems. In this example, k is the number of users in the system and n is the length of the coding sequence of each of the users. Each user transmits at the same time and uses the same frequency; the codes are used to distinguish the signals of the separate users. The results imply large deviation bounds for the probability of a bit error due to the interference of the various users.
The upper tail behaviour is explored for a stopped random product ∏j=1NXj, where the factors are positive and independent and identically distributed, and N is the first time one of the factors occupies a subset of the positive reals. This structure is motivated by a heavy-tailed analogue of the factorial n!, called the factoid of n. Properties of the factoid suggested by computer explorations are shown to be valid. Two topics about the determination of the Zipf exponent in the rank-size law for city sizes are discussed.
In this paper, a fourth moment bound for partial sums of functionals of strongly ergodic Markov chains is established. This type of inequality plays an important role in the study of the empirical process invariance principle. This inequality is specially adapted to the technique of Dehling, Durieu, and Volný (2008). The same moment bound can be proved for dynamical systems whose transfer operator has some spectral properties. Examples of applications are given.
In this paper we present a stability criterion for processor-sharing queues, in which the throughput may depend on the number of customers in the system (such as in the case of interferences between users). Such a system is represented by a point measure-valued stochastic recursion keeping track of the remaining processing times of the customers.
This paper is devoted to the study of some asymptotic behaviors of Poisson-Voronoi tessellation in the Euclidean space as the space dimension tends to ∞. We consider a family of homogeneous Poisson-Voronoi tessellations with constant intensity λ in Euclidean spaces of dimensions n = 1, 2, 3, …. First we use the Blaschke-Petkantschin formula to prove that the variance of the volume of the typical cell tends to 0 exponentially in dimension. It is also shown that the volume of intersection of the typical cell with the co-centered ball of volume u converges in distribution to the constant λ−1(1 − e−λu). Next we consider the linear contact distribution function of the Poisson-Voronoi tessellation and compute the limit when the space dimension goes to ∞. As a by-product, the chord length distribution and the geometric covariogram of the typical cell are obtained in the limit.
We study a collector's problem with K renewal arrival processes for different type items, where the objective is to collect complete sets. In particular, we derive the asymptotic distribution of the sequence of interarrival times between set completions.
We study a continuous-time random walk on the d-dimensional lattice, subject to a drift and an attraction to large clusters of a subcritical Bernoulli site percolation. We find two distinct regimes: a ballistic one, and a subballistic one taking place when the attraction is strong enough. We identify the speed in the former case, and the algebraic rate of escape in the latter case. Finally, we discuss the diffusive behavior in the case of zero drift and weak attraction.
In this paper a limit theorem is proved that establishes conditions under which the distribution of the difference between the size of the initial event in a random sequence, modeled as a finite point process, and the largest subsequent event approaches a limiting form independent of the size of the initial event. The underlying assumptions are that the sizes of the individual events follow an exponential distribution, that the expected total number of events increases exponentially with the size of the initial event, and that the structure of the sequence approximates that of a Poisson process. Particular cases to which the results apply include sequences of independent and identically distributed exponential variables, and the epidemic-type aftershock (ETAS) branching process model in the subcritical case. In all these cases the form of the limit distribution is shown to be that of a double exponential (type-I extreme value distribution). In sampling from a family of aftershock sequences, with possibly different underlying parameters, the limit distribution is a mixture of such double exponential distributions. The conditions for the simple limit to exist relate to the approximation of the distribution of the number of events by a Poisson distribution. One such condition requires the coefficient of variation (ratio of standard deviation to mean) of the number of events to converge to 0 as the mean increases. The results provide a statistical background to Båth's law in seismology, which asserts that in an aftershock sequence the magnitude of the main shock is commonly around 1.2 units higher than the magnitude of the largest aftershock.
Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅1 and its induced Wasserstein metric d̅2 for point process distributions are given, including examples of useful d̅1-Lipschitz continuous functions, d̅2 upper bounds for the Poisson process approximation, and d̅2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅1 in applications.
This paper is concerned with the finiteness and large-time behaviour of moments of the overshoot and undershoot of a high level, and of their moment generating functions (MGFs), for a Lévy process which drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process. Results of Klüppelberg, Kyprianou, and Maller (2004) and Doney and Kyprianou (2006) for asymptotic overshoot and undershoot distributions in the class of Lévy processes with convolution equivalent canonical measures are shown to have moment and MGF convergence extensions.
Coupons are collected one at a time from a population containing n distinct types of coupon. The process is repeated until all n coupons have been collected and the total number of draws, Y, from the population is recorded. It is assumed that the draws from the population are independent and identically distributed (draws with replacement) according to a probability distribution X with the probability that a type-i coupon is drawn being P(X = i). The special case where each type of coupon is equally likely to be drawn from the population is the classic coupon collector problem. We consider the asymptotic distribution Y (appropriately normalized) as the number of coupons n → ∞ under general assumptions upon the asymptotic distribution of X. The results are proved by studying the total number of coupons, W(t), not collected in t draws from the population and noting that P(Y ≤ t) = P(W(t) = 0). Two normalizations of Y are considered, the choice of normalization depending upon whether or not a suitable Poisson limit exists for W(t). Finally, extensions to the K-coupon collector problem and the birthday problem are given.
We establish a functional large deviation principle and a functional moderate deviation principle for Markov-modulated risk models with reinsurance by constructing an exponential martingale approach. Lundberg's estimate of the ruin time is also presented.