To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The variable generalised stochastic epidemic model, which allows for variability in both the susceptibilities and infectivities of individuals, is analysed. A very different epidemic model which exhibits variable susceptibility and infectivity is the random-graph epidemic model. A suitable coupling of the two epidemic models is derived which enables us to show that, whilst the epidemics are very different in appearance, they have the same asymptotic final size distribution. The coupling provides a novel approach to studying random-graph epidemic models.
In this paper we consider a discrete-time process which grows according to a random walk with nonnegative increments between crash times at which it collapses to 0. We assume that the probability of crashing depends on the level of the process. We study the stochastic stability of this growth-collapse process. Special emphasis is given to the case in which the probability of crashing tends to 0 as the level of the process increases. In particular, we show that the process may exhibit long-range dependence and that the crash sizes may have a power law distribution.
This paper investigates new properties concerning the multifractal structure of a class of random self-similar measures. These measures include the well-known Mandelbrot multiplicative cascades, sometimes called independent random cascades. We evaluate the scale at which the multifractal structure of these measures becomes discernible. The value of this scale is obtained through what we call the growth speed in Hölder singularity sets of a Borel measure. This growth speed yields new information on the multifractal behavior of the rescaled copies involved in the structure of statistically self-similar measures. Our results are useful in understanding the multifractal nature of various heterogeneous jump processes.
In this paper we propose a new genetic algorithm specifically based on mutation and selection in order to maximize a fitness function. This mutation-selection algorithm behaves as a gradient algorithm which converges to local maxima. In order to obtain convergence to global maxima we propose a new algorithm which is built by randomly perturbing the selection operator of the gradient-like algorithm. The perturbation is controlled by only one parameter: that which allows the selection pressure to be governed. We use the Markov model of the perturbed algorithm to prove its convergence to global maxima. The arguments used in the proofs are based on Freidlin and Wentzell's (1984) theory and large deviation techniques also applied in simulated annealing. Our main results are that (i) when the population size is greater than a critical value, the control of the selection pressure ensures the convergence to the global maxima of the fitness function, and (ii) the convergence also occurs when the population is the smallest possible, i.e. 1.
A large deviations principle (LDP), demonstrated for occupancy problems with indistinguishable balls, is generalized to the case in which balls are distinguished by a finite number of colors. The colors of the balls are chosen independently from the occupancy process itself. There are r balls thrown into n urns with the probability of a ball entering a given urn being 1/n (i.e. Maxwell-Boltzmann statistics). The LDP applies with the scale parameter, n, tending to infinity and r increasing proportionally. The LDP holds under mild restrictions, the key one being that the coloring process by itself satisfies an LDP. This includes the important special cases of deterministic coloring patterns and colors chosen with fixed probabilities independently for each ball.
The discrete scan statistic in a binary (0-1) sequence of n trials is defined as the maximum number of successes within any k consecutive trials (n and k, n ≥ k, being two positive integers). It has been used in many areas of science (quality control, molecular biology, psychology, etc.) to test the null hypothesis of uniformity against a clustering alternative. In this article we provide a compound Poisson approximation and subsequently use it to establish asymptotic results for the distribution of the discrete scan statistic as n, k → ∞ and the success probability of the trials is kept fixed. An extreme value theorem is also provided for the celebrated Erdős-Rényi statistic.
The ‘square root formula’ in the Internet transmission control protocol (TCP) states that if the probability p of packet loss becomes small and there is independence between packets, then the stationary distribution of the congestion window W is such that the distribution of W√p is almost independent of p and is completely characterizable. This paper gives an elementary proof of the convergence of the stationary distributions for a much wider class of processes that includes classical TCP as well as T. Kelly's ‘scalable TCP’. This paper also gives stochastic dominance results that translate to a rate of convergence.
We consider growing random recursive trees in random environments, in which at each step a new vertex is attached (by an edge of random length) to an existing tree vertex according to a probability distribution that assigns the tree vertices masses proportional to their random weights. The main aim of the paper is to study the asymptotic behaviour of the distance from the newly inserted vertex to the tree's root and that of the mean numbers of outgoing vertices as the number of steps tends to ∞. Most of the results are obtained under the assumption that the random weights have a product form with independent, identically distributed factors.
In this paper we obtain central limit theorems for generalized Pólya urn models with L ≥ 2 colors where one out of K different replacements (actions) is applied randomly at each step. Each possible action constitutes a row of the replacement matrix, which can be nonsquare and random. The actions are chosen following a probability distribution given by an arbitrary function of the proportions of the balls of different colors present in the urn. Moreover, under the same hypotheses it is proved that the covariance matrix of the asymptotic distribution is the solution of a Lyapunov equation, and a procedure is given to obtain the covariance matrix in an explicit form. Some applications of these results to random trees and adaptive designs in clinical trials are also presented.
It was recently proved by Jelenković and Radovanović (2004) that the least-recently-used (LRU) caching policy, in the presence of semi-Markov-modulated requests that have a generalized Zipf's law popularity distribution, is asymptotically insensitive to the correlation in the request process. However, since the previous result is asymptotic, it remains unclear how small the cache size can become while still retaining the preceding insensitivity property. In this paper, assuming that requests are generated by a nearly completely decomposable Markov-modulated process, we characterize the critical cache size below which the dependency of requests dominates the cache performance. This critical cache size is small relative to the dynamics of the modulating process, and in fact is sublinear with respect to the sojourn times of the modulated chain that determines the dependence structure.
We study the genealogy of so-called immortal branching processes, i.e. branching processes where each individual upon death is replaced by at least one new individual, and conclude that their marginal distributions are compound geometric. The result also implies that the limiting distributions of properly scaled supercritical branching processes are compound geometric. We exemplify our results with an expression for the marginal distribution for a class of branching processes that have recently appeared in the theory of coalescent processes and continuous stable random trees. The limiting distribution can be expressed in terms of the Fox H-function, and in special cases by the Meijer G-function.
For stationary sequences X = {Xn}n≥1 we relate τ, the limiting mean number of exceedances of high levels un by X1,…,Xn, and ν, the limiting mean number of upcrossings of the same level, through the expression θ = (ν/τ)η, where θ is the extremal index of X and η is a new parameter here called the upcrossings index. The upcrossings index is a measure of the clustering of upcrossings of u by variables in X, and the above relation extends the known relation θ = ν/τ, which holds under the mild-oscillation local restriction D″(u) on X. We present a new family of local mixing conditions D̃(k)(u) under which we prove that (a) the intensity of the limiting point process of upcrossings and η can both be computed from the k-variate distributions of X; and (b) the cluster size distributions for the exceedances are asymptotically equivalent to those for the lengths of one run of exceedances or the lengths of several consecutive runs which are separated by at most k − 2 nonexceedances and, except for the last one, each contain at most k − 2 exceedances.
Under certain assumptions on the dependence structure of the residual lives of the insured (i.e. their independence, positive association, or negative association), in this paper we establish some laws of large numbers for the convex upper bounds, derived by the technique of comonotonicity, of the present value function of a homogeneous portfolio composed of the whole-life insurance policies.
Under some relaxed conditions, in this paper we obtain some equivalent conditions on the asymptotics of the density of the supremum of a random walk with heavy-tailed increments. To do this, we investigate the asymptotics of the first ascending ladder height of a random walk with heavy-tailed increments. The results obtained improve and extend the corresponding classical results.
We consider risk processes with reinsurance. A general family of reinsurance contracts is allowed, including proportional and excess-of-loss policies. Claim occurrence is regulated by a classical compound Poisson process or by a Markov-modulated compound Poisson process. We provide some large deviation results concerning these two risk processes in the small-claim case. Finally, we derive the so-called Lundberg estimate for the ruin probabilities and present a numerical example.
Random fields on , with long-range weak dependence for each coordinate individually, usually present clustering of high values. For each one of the eight directions in , we formulate restriction conditions on local occurrence of two or more crossings of high levels. These smooth oscillation conditions enable computation of the extremal index as a clustering measure from the limiting mean number of crossings. In fact, only four directions must be inspected since for opposite directions we find the same local path crossing behaviour and the same limiting mean number of crossings. The general theory is illustrated with several 1-dependent nonstationary random fields.
In this paper, we adapt the very effective Berry-Esseen theorems of Chen and Shao (2004), which apply to sums of locally dependent random variables, for use with randomly indexed sums. Our particular interest is in random variables resulting from integrating a random field with respect to a point process. We illustrate the use of our theorems in three examples: in a rather general model of the insurance collective; in problems in geometrical probability involving stabilizing functionals; and in counting the maximal points in a two-dimensional region.
We present recursions for the total number, Sn, of mutations in a sample of n individuals, when the underlying genealogical tree of the sample is modelled by a coalescent process with mutation rate r>0. The coalescent is allowed to have simultaneous multiple collisions of ancestral lineages, which corresponds to the existence of large families in the underlying population model. For the subclass of Λ-coalescent processes allowing for multiple collisions, such that the measure Λ(dx)/x is finite, we prove that Sn/(nr) converges in distribution to a limiting variable, S, characterized via an exponential integral of a certain subordinator. When the measure Λ(dx)/x2 is finite, the distribution of S coincides with the stationary distribution of an autoregressive process of order 1 and is uniquely determined via a stochastic fixed-point equation of the form with specific independent random coefficients A and B. Examples are presented in which explicit representations for (the density of) S are available. We conjecture that Sn/E(Sn)→1 in probability if the measure Λ(dx)/x is infinite.
In Bhatt and Roy's minimal directed spanning tree construction for a random, partially ordered set of points in the unit square, all edges must respect the ‘coordinatewise’ partial order and there must be a directed path from each vertex to a minimal element. We study the asymptotic behaviour of the total length of this graph with power-weighted edges. The limiting distribution is given by the sum of a normal component away from the boundary plus a contribution introduced by the boundary effects, which can be characterized by a fixed-point equation, and is reminiscent of limits arising in the probabilistic analysis of certain algorithms. As the exponent of the power weighting increases, the distribution undergoes a phase transition from the normal contribution being dominant to the boundary effects being dominant. In the critical case in which the weight is simple Euclidean length, both effects contribute significantly to the limit law.
We consider a stochastic process in a modified Ehrenfest urn model. The modification prescribes there to be a minimum number of balls in each urn, and the process records the differences between treatment assignments under a sampling scheme implemented with this modified Ehrenfest urn model. In contrast to the result that the difference process forms a Markov chain and converges to a stationary distribution under the Ehrenfest urn model, the corresponding process under this modified Ehrenfest urn design satisfies the central limit property. We prove this asymptotic normality property using a central limit theorem for dependent random variables, renewal theory, and two Kolmogorov-type maximal inequalities.