We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The problem of discriminating between two Markov chains is considered. It is assumed that the common state space of the chains is finite and all the finite dimensional distributions are mutually absolutely continuous. The Bayes risk is expressed through large deviation probabilities for sums of random variables defined on an auxiliary Markov chain. The proofs are based on a large deviation theorem recently established by Z. Szewczak.
The paper considers one of the standard processes for modeling returns in finance, the stochastic volatility process with regularly varying innovations. The aim of the paper is to show how point process techniques can be used to derive the asymptotic behavior of the sample autocorrelation function of this process with heavy-tailed marginal distributions. Unlike other non-linear models used in finance, such as GARCH and bilinear models, sample autocorrelations of a stochastic volatility process have attractive asymptotic properties. Specifically, in the infinite variance case, the sample autocorrelation function converges to zero in probability at a rate that is faster the heavier the tails of the marginal distribution. This behavior is analogous to the asymptotic behavior of the sample autocorrelations of independent identically distributed random variables.
Haploid population models with non-overlapping generations and fixed population size N are considered. It is assumed that the family sizes ν1,…,νN within a generation are exchangeable random variables. Rates of convergence for the finite-dimensional distributions of a properly time-scaled ancestral coalescent process are established and expressed in terms of the transition probabilities of the ancestral process, i.e., in terms of the joint factorial moments of the offspring variables ν1,…,νN.
The Kingman coalescent appears in the limit as the population size N tends to infinity if and only if triple mergers are asymptotically negligible in comparison with binary mergers. In this case, a simple upper bound for the rate of convergence of the finite-dimensional distributions is derived. It depends (up to some constants) only on the three factorial moments E((ν1)2), E((ν1)3) and E((ν1)2(ν2)2), where (x)k := x(x-1)…(x-k+1). Examples are the Wright-Fisher model, where the rate of convergence is of order N-1, and the Moran model, with a convergence rate of order N-2.
A new representation for the characteristic function of the multivariate strictly geo-stable distribution is presented. The representation is appealing from a parametric viewpoint: its parameters have an intuitive probabilistic interpretation; and it is particularly useful for estimating the parameters of the geo-stable distribution.
A near-maximum is an observation which falls within a distance a of the maximum observation in an i.i.d. sample of size n. The asymptotic behaviour of the number Kn(a) of near-maxima is known for the cases where the right extremity of the population distribution function is finite, and where it is infinite and the right hand tail is exponentially small, or fatter than exponential. This paper completes the picture for thin tails, i.e., tails which decay faster than exponential. Limit theorems are derived and used to find the large-sample behaviour of the sum of near-maxima.
It is common practice to approximate the cell loss probability (CLP) of cells entering a finite buffer by the overflow probability (OVFL) of a corresponding infinite buffer queue, since the CLP is typically harder to estimate. We obtain exact asymptotic results for CLP and OVFL for time-slotted queues where block arrivals in different time slots are i.i.d. and one cell is served per time slot. In this case the ratio of CLP to OVFL is asymptotically (1-ρ)/ρ, where ρ is the use or, equivalently, the mean arrival rate per time slot. Analogous asymptotic results are obtained for continuous time M/G/1 queues. In this case the ratio of CLP to OVFL is asymptotically 1-ρ.
We study the (two-sided) exit time and position of a random walk outside boundaries which are regularly varying functions of smaller order at infinity than the square root. A natural domain of interest is those random walks which are attracted without centring to a normal law, or are relatively stable. These are shown to have ‘stable’ exit positions, in that the overshoot of the curved boundary is of smaller order of magnitude (in probability) than the boundary, as the boundary expands. Surprisingly, this remains true regardless of the shape of the boundary. Furthermore, within the same natural domain of interest, norming of the exit position by, for example, the square root of the exit time (in the finite-variance case), produces limiting distributions which are computable from corresponding functionals of Brownian motion. We give a functional limit theorem for attraction of normed sums to general infinitely divisible random variables, as a means of making this, and more general, computations. These kinds of theorems have applications in sequential analysis, for example.
Suppose X1,X2 are independent random variables satisfying a second-order regular variation condition on the tail-sum and a balance condition on the tails. In this paper we give a description of the asymptotic behaviour as t → ∞ for P(X1 + X2 > t). The result is applied to the problem of risk diversification in portfolio analysis and to the estimation of the parameter in a MA(1) model.
Previous work on the joint asymptotic distribution of the sum and maxima of Gaussian processes is extended here. In particular, it is shown that for a stationary sequence of standard normal random variables with correlation function r, the condition r(n)ln n = o(1) as n → ∞ suffices to establish the asymptotic independence of the sum and maximum.
We consider a birth and growth model where points (‘seeds’) arrive on a line randomly in time and space and proceed to ‘cover’ the line by growing at a uniform rate in both directions until an opposing branch is met; points which arrive on covered parts of the line do not contribute to the process. Existing results concerning the number of seeds assume that points arrive according to a Poisson process, homogeneous on the line, but possibly inhomogeneous in time. We derive results under less stringent assumptions, namely that the arrival process be a stationary simple point process.
We formulate and verify an almost-sure lattice renewal theorem for branching random walks, whose non-lattice analogue is originally due to Nerman. We also identify the limit in these renewal theorems (both lattice and non-lattice) as the limit of Kingman's well-known martingale multiplied by a deterministic factor.
Consider the following birth-growth model in ℝ. Seeds are born randomly according to an inhomogeneous space-time Poisson process. A newly formed point immediately initiates a bi-directional coverage by sending out a growing branch. Each frontier of a branch moves at a constant speed until it meets an opposing one. New seeds continue to form on the uncovered parts on the line. We are interested in the time until a bounded interval is completely covered. The exact and limiting distributions as the length of interval tends to infinity are obtained for this completion time by considering a related Markov process. Moreover, some strong limit results are also established.
It is shown that an Ornstein-Uhlenbeck type process associated with a spectrally
positive Lévy process can be obtained as the fluctuation limits of both discrete state and continuous state branching processes with immigration.
We derive some asymptotic results for the rate of convergence to equilibrium for the number of busy servers in an M/M/N/N queue with input rate λN and service rate 1 for N → ∞ in the ‘subcritical’ case λ ∈]0, 1[. These results improve recent contributions of Fricker, Robert and Tibi.
A central limit theorem is established for additive functions of a Markov chain that can be constructed as an iterated random function. The result goes beyond earlier work by relaxing the continuity conditions imposed on the additive function, and by relaxing moment conditions related to the random function. It is illustrated by an application to a Markov chain related to fractals.
When the premium rate is a positive absolute constant throughout the time period of observation and the safety loading of the insurance business is positive, a classical result of collective risk theory claims that probabilities of ultimate ruin ψ(u) and of ruin within finite time ψ(t,u) decrease as eϰu with a constant ϰ>0, as the initial risk reserve u increases. This paper establishes uniform approximations to ψ(t,u) with slower rates of decrease when the premium rate depends on u in such a way that the safety loading decreases to zero as
u→∞.
This work develops a class of stochastic global optimization algorithms that are Kiefer-Wolfowitz (KW) type procedures with an added perturbing noise and partial step size restarting. The motivation stems from the use of KW-type procedures and Monte Carlo versions of simulated annealing algorithms in a wide range of applications. Using weak convergence approaches, our effort is directed to proving the convergence of the underlying algorithms under general noise processes.
We study strong asymptotic properties of two types of integral functionals of geometric stochastic processes. These integral functionals are of interest in financial modelling, yielding various option pricings, annuities, etc., by appropriate selection of the processes in their respective integrands. We show that under fairly general conditions on the latter processes the logs of the integral functionals themselves asymptotically behave like appropriate sup functionals of the processes in the exponents of their respective integrands. We illustrate the possible use and applications of these strong invariance theorems by listing and elaborating on several examples.
Consider a janken game (scissors-paper-rock game) started by n players such that (1) the first round is played by n players, (2) the losers of each round (if any) retire from the rest of the game, and (3) the game ends when only one player (winner) is left. Let Wn be the number of rounds played through the game. Among other things, it is proved that (2/3)nWn is asymptotically (as n → ∞) distributed according to the exponential distribution with mean ⅓, provided that each player chooses one of the three strategies (scissors, paper, rock) with equal probability and independently from other players in any round.
We consider a multiserver queue in the heavy-traffic regime introduced and studied by Halfin and Whitt who investigated the case of a single customer class with exponentially distributed service times. Our purpose is to extend their analysis to a system with multiple customer classes, priorities, and phase-type service distributions. We prove a weak convergence limit theorem showing that a properly defined and normalized queue length process converges to a particular K-dimensional diffusion process, where K is the number of phases in the service time distribution. We also show that a properly normalized waiting time process converges to a simple functional of the limit diffusion for the queue length.