We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracted balls of a certain color, given the past, is assumed to be hypergeometric. We prove some central limit theorems in the sense of stable convergence and of almost sure conditional convergence, which are stronger than convergence in distribution. The proven results provide asymptotic confidence intervals for the limit proportion, whose distribution is generally unknown. Moreover, we also consider the case of more urns subjected to some random common factors.
We obtain a complete description of anisotropic scaling limits of the random grain model on the plane with heavy-tailed grain area distribution. The scaling limits have either independent or completely dependent increments along one or both coordinate axes and include stable, Gaussian, and ‘intermediate’ infinitely divisible random fields. The asymptotic form of the covariance function of the random grain model is obtained. Application to superimposed network traffic is included.
We consider random variables observed at arrival times of a renewal process, which possibly depends on those observations and has regularly varying steps with infinite mean. Due to the dependence and heavy-tailed steps, the limiting behavior of extreme observations until a given time t tends to be rather involved. We describe the asymptotics and extend several partial results which appeared in this setting. The theory is applied to determine the asymptotic distribution of maximal excursions and sojourn times for continuous-time random walks.
The longest stretch L(n) of consecutive heads in n independent and identically distributed coin tosses is seen from the prism of large deviations. We first establish precise asymptotics for the moment generating function of L(n) and then show that there are precisely two large deviation principles, one concerning the behavior of the distribution of L(n) near its nominal value log1∕pn and one away from it. We discuss applications to inference and to logarithmic asymptotics of functionals of L(n).
In this paper we study a discrete-time optimal switching problem on a finite horizon. The underlying model has a running reward, terminal reward, and signed (positive and negative) switching costs. Using optimal stopping theory for discrete-parameter stochastic processes, we extend a well-known explicit dynamic programming method for computing the value function and the optimal strategy to the case of signed switching costs.
When a random field (Xt,t∈ℝ2) is thresholded on a given level u, the excursion set is given by its indicator 1[u, ∞)(Xt). The purpose of this work is to study functionals (as established in stochastic geometry) of these random excursion sets as, e.g. the capacity functional as well as the second moment measure of the boundary length. It extends results obtained for the one-dimensional case to the two-dimensional case, with tools borrowed from crossings theory, in particular, Rice methods, and from integral and stochastic geometry.
We study random walks whose increments are α-stable distributions with shape parameter 1<α<2. Specifically, assuming a mean increment size which is negative, we provide series expansions in terms of the mean increment size for the probability that the all-time maximum of an α-stable random walk is equal to 0 and, in the totally skewed-to-the-left case of skewness parameter β=-1, for the expected value of the all-time maximum of an α-stable random walk. Our series expansions generalize previous results for Gaussian random walks. Key ingredients in our proofs are Spitzer's identity for random walks, the stability property of α-stable random variables, and Zolotarev's integral representation for the cumulative distribution function of an α-stable random variable. We also discuss an application of our results to a problem arising in queueing theory.
We study G/G/∞ queues with renewal alternating service interruptions, where the service station experiences `up' and `down' periods. The system operates normally in the up periods, and all servers stop functioning while customers continue entering the system during the down periods. The amount of service a customer has received when an interruption occurs will be conserved and the service will resume when the down period ends. We use a two-parameter process to describe the system dynamics: Xr(t,y) tracking the number of customers in the system at time t that have residual service times strictly greater than y. The service times are assumed to satisfy either of the two conditions: they are independent and identically distributed with a distribution of a finite support, or are a stationary and weakly dependent sequence satisfying the ϕ-mixing condition and having a continuous marginal distribution function. We consider the system in a heavy-traffic asymptotic regime where the arrival rate gets large and service time distribution is fixed, and the interruption down times are asymptotically negligible while the up times are of the same order as the service times. We show the functional law of large numbers and functional central limit theorem (FCLT) for the process Xr(t,y) in this regime, where the convergence is in the space 𝔻([0,∞), (𝔻, L1)) endowed with the Skorokhod M1 topology. The limit processes in the FCLT possess a stochastic decomposition property.
We study partial hedging for game options in markets with transaction costs bounded from below. More precisely, we assume that the investor's transaction costs for each trade are the maximum between proportional transaction costs and a fixed transaction cost. We prove that in the continuous-time Black‒Scholes (BS) model, there exists a trading strategy which minimizes the shortfall risk. Furthermore, we use binomial models in order to provide numerical schemes for the calculation of the shortfall risk and the corresponding optimal portfolio in the BS model.
In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (nonfractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.
We review, implement, and compare numerical integration schemes for spatially bounded
diffusions stopped at the boundary which possess a convergence rate of the
discretization error with respect to the timestep h higher than
. We address specific implementation issues of the most
general-purpose of such schemes. They have been coded into a single Matlab program
and compared, according to their accuracy and computational cost, on a wide range of
problems in up to ℝ48. The paper is self-contained and the code will be
made freely downloadable.
We study the exciton diffusion in organic semiconductors from a macroscopic viewpoint. In a unified way, we conduct the equivalence analysis between Monte-Carlo method and diffusion equation model for photoluminescence quenching and photocurrent spectrum measurements, in both the presence and the absence of Förster energy transfer effect. Connections of these two models to Stern-Volmer method and exciton-exciton annihilation method are also specified for the photoluminescence quenching measurement.
Famously, a d-dimensional, spatially homogeneous random walk whose increments are nondegenerate, have finite second moments, and have zero mean is recurrent if d∈{1,2}, but transient if d≥3. Once spatial homogeneity is relaxed, this is no longer true. We study a family of zero-drift spatially nonhomogeneous random walks (Markov processes) whose increment covariance matrix is asymptotically constant along rays from the origin, and which, in any ambient dimension d≥2, can be adjusted so that the walk is either transient or recurrent. Natural examples are provided by random walks whose increments are supported on ellipsoids that are symmetric about the ray from the origin through the walk's current position; these elliptic random walks generalize the classical homogeneous Pearson‒Rayleigh walk (the spherical case). Our proof of the recurrence classification is based on fundamental work of Lamperti.
Preferential attachment is a widely adopted paradigm for understanding the dynamics of social networks. Formal statistical inference, for instance GLM techniques, and model-verification methods will require knowing test statistics are asymptotically normal even though node- or count-based network data are nothing like classical data from independently replicated experiments. We therefore study asymptotic normality of degree counts for a sequence of growing simple undirected preferential attachment graphs. The methods of proof rely on identifying martingales and then exploiting the martingale central limit theorems.
The self-similar growth-fragmentation equation describes the evolution of a medium in which particles grow and divide as time proceeds, with the growth and splitting of each particle depending only upon its size. The critical case of the equation, in which the growth and division rates balance one another, was considered in Doumic and Escobedo (2015) for the homogeneous case where the rates do not depend on the particle size. Here, we study the general self-similar case, using a probabilistic approach based on Lévy processes and positive self-similar Markov processes which also permits us to analyse quite general splitting rates. Whereas existence and uniqueness of the solution are rather easy to establish in the homogeneous case, the equation in the nonhomogeneous case has some surprising features. In particular, using the fact that certain self-similar Markov processes can enter (0,∞) continuously from either 0 or ∞, we exhibit unexpected spontaneous generation of mass in the solutions.
Natural disasters may have considerable impact on society as well as on the (re-)insurance industry. Max-stable processes are ideally suited for the modelling of the spatial extent of such extreme events, but it is often assumed that there is no temporal dependence. Only a few papers have introduced spatiotemporal max-stable models, extending the Smith, Schlather and Brown‒Resnick spatial processes. These models suffer from two major drawbacks: time plays a similar role to space and the temporal dynamics are not explicit. In order to overcome these defects, we introduce spatiotemporal max-stable models where we partly decouple the influence of time and space in their spectral representations. We introduce both continuous- and discrete-time versions. We then consider particular Markovian cases with a max-autoregressive representation and discuss their properties. Finally, we briefly propose an inference methodology which is tested through a simulation study.
In this paper we give a simple proof of a limit theorem for the length of the largest interval straddling a fixed number of points that are independent and uniformly distributed on a unit interval. The key step in our argument is a classical theorem of Watson on the maxima of m-dependent stationary stochastic sequences.
Kuznetsov and co-authors in 2011‒14 introduced the family of hypergeometric Lévy processes. They appear naturally in the study of fluctuations of stable processes when one analyses stable processes through the theory of positive self-similar Markov processes. Hypergeometric Lévy processes are defined through their characteristic exponent, which, as a complex-valued function, has four independent parameters. In 2014 it was shown that the definition of a hypergeometric Lévy process could be taken to include a greater range of the aforesaid parameters than originally specified. In this short article, we push the parameter range even further.
Following the approach of standard filtering theory, we analyse investor valuation of firms, when these are modelled as geometric-Brownian state processes that are privately and partially observed, at random (Poisson) times, by agents. Tasked with disclosing forecast values, agents are able purposefully to withhold their observations; explicit filtering formulae are derived for downgrading the valuations in the absence of disclosures. The analysis is conducted for both a solitary firm and m co-dependent firms.
We derive asymptotic theory for the extremogram and cross-extremogram of a bivariate GARCH(1,1) process. We show that the tails of the components of a bivariate GARCH(1,1) process may exhibit power-law behavior but, depending on the choice of the parameters, the tail indices of the components may differ. We apply the theory to five-minute return data of stock prices and foreign-exchange rates. We judge the fit of a bivariate GARCH(1,1) model by considering the sample extremogram and cross-extremogram of the residuals. The results are in agreement with the independent and identically distributed hypothesis of the two-dimensional innovations sequence. The cross-extremograms at lag zero have a value significantly distinct from zero. This fact points at some strong extremal dependence of the components of the innovations.