To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Preferential attachment is a widely adopted paradigm for understanding the dynamics of social networks. Formal statistical inference, for instance GLM techniques, and model-verification methods will require knowing test statistics are asymptotically normal even though node- or count-based network data are nothing like classical data from independently replicated experiments. We therefore study asymptotic normality of degree counts for a sequence of growing simple undirected preferential attachment graphs. The methods of proof rely on identifying martingales and then exploiting the martingale central limit theorems.
The self-similar growth-fragmentation equation describes the evolution of a medium in which particles grow and divide as time proceeds, with the growth and splitting of each particle depending only upon its size. The critical case of the equation, in which the growth and division rates balance one another, was considered in Doumic and Escobedo (2015) for the homogeneous case where the rates do not depend on the particle size. Here, we study the general self-similar case, using a probabilistic approach based on Lévy processes and positive self-similar Markov processes which also permits us to analyse quite general splitting rates. Whereas existence and uniqueness of the solution are rather easy to establish in the homogeneous case, the equation in the nonhomogeneous case has some surprising features. In particular, using the fact that certain self-similar Markov processes can enter (0,∞) continuously from either 0 or ∞, we exhibit unexpected spontaneous generation of mass in the solutions.
Natural disasters may have considerable impact on society as well as on the (re-)insurance industry. Max-stable processes are ideally suited for the modelling of the spatial extent of such extreme events, but it is often assumed that there is no temporal dependence. Only a few papers have introduced spatiotemporal max-stable models, extending the Smith, Schlather and Brown‒Resnick spatial processes. These models suffer from two major drawbacks: time plays a similar role to space and the temporal dynamics are not explicit. In order to overcome these defects, we introduce spatiotemporal max-stable models where we partly decouple the influence of time and space in their spectral representations. We introduce both continuous- and discrete-time versions. We then consider particular Markovian cases with a max-autoregressive representation and discuss their properties. Finally, we briefly propose an inference methodology which is tested through a simulation study.
In this paper we give a simple proof of a limit theorem for the length of the largest interval straddling a fixed number of points that are independent and uniformly distributed on a unit interval. The key step in our argument is a classical theorem of Watson on the maxima of m-dependent stationary stochastic sequences.
Kuznetsov and co-authors in 2011‒14 introduced the family of hypergeometric Lévy processes. They appear naturally in the study of fluctuations of stable processes when one analyses stable processes through the theory of positive self-similar Markov processes. Hypergeometric Lévy processes are defined through their characteristic exponent, which, as a complex-valued function, has four independent parameters. In 2014 it was shown that the definition of a hypergeometric Lévy process could be taken to include a greater range of the aforesaid parameters than originally specified. In this short article, we push the parameter range even further.
Following the approach of standard filtering theory, we analyse investor valuation of firms, when these are modelled as geometric-Brownian state processes that are privately and partially observed, at random (Poisson) times, by agents. Tasked with disclosing forecast values, agents are able purposefully to withhold their observations; explicit filtering formulae are derived for downgrading the valuations in the absence of disclosures. The analysis is conducted for both a solitary firm and m co-dependent firms.
We derive asymptotic theory for the extremogram and cross-extremogram of a bivariate GARCH(1,1) process. We show that the tails of the components of a bivariate GARCH(1,1) process may exhibit power-law behavior but, depending on the choice of the parameters, the tail indices of the components may differ. We apply the theory to five-minute return data of stock prices and foreign-exchange rates. We judge the fit of a bivariate GARCH(1,1) model by considering the sample extremogram and cross-extremogram of the residuals. The results are in agreement with the independent and identically distributed hypothesis of the two-dimensional innovations sequence. The cross-extremograms at lag zero have a value significantly distinct from zero. This fact points at some strong extremal dependence of the components of the innovations.
This is a case study concerning the rate at which probabilistic coupling occurs for nilpotent diffusions. We focus on the simplest case of Kolmogorov diffusion (Brownian motion together with its time integral or, more generally, together with a finite number of iterated time integrals). We show that in this case there can be no Markovian maximal coupling. Indeed, there can be no efficient Markovian coupling strategy (efficient for all pairs of distinct starting values), where the notion of efficiency extends the terminology of Burdzy and Kendall (2000). Finally, at least in the classical case of a single time integral, it is not possible to choose a Markovian coupling that is optimal in the sense of simultaneously minimizing the probability of failing to couple by time t for all positive t. In recompense for all these negative results, we exhibit a simple efficient non-Markovian coupling strategy.
Let $L$ be a countable language. We say that a countable infinite $L$-structure ${\mathcal{M}}$ admits an invariant measure when there is a probability measure on the space of $L$-structures with the same underlying set as ${\mathcal{M}}$ that is invariant under permutations of that set, and that assigns measure one to the isomorphism class of ${\mathcal{M}}$. We show that ${\mathcal{M}}$ admits an invariant measure if and only if it has trivial definable closure, that is, the pointwise stabilizer in $\text{Aut}({\mathcal{M}})$ of an arbitrary finite tuple of ${\mathcal{M}}$ fixes no additional points. When ${\mathcal{M}}$ is a Fraïssé limit in a relational language, this amounts to requiring that the age of ${\mathcal{M}}$ have strong amalgamation. Our results give rise to new instances of structures that admit invariant measures and structures that do not.
Let $\mathcal{M}$ and G denote, respectively, the maximal operator and the geometric maximal operator associated with the dyadic lattice on $\mathbb{R}^d$.
(i) We prove that for any 0 < p < ∞, any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, we have Fefferman–Stein-type estimate
Momentum is the notion that an asset that has performed well in the past will continue to do so for some period. We study the optimal liquidation strategy for a momentum trade in a setting where the drift of the asset drops from a high value to a smaller one at some random change-point. This change-point is not directly observable for the trader, but it is partially observable in the sense that it coincides with one of the jump times of some exogenous Poisson process representing external shocks, and these jump times are assumed to be observable. Comparisons with existing results for momentum trading under incomplete information show that the assumption that the disappearance of the momentum effect is triggered by observable external shocks significantly improves the optimal strategy.
In this paper we consider time-changed models of population evolution Xf(t) = X(Hf(t)), where X is a counting process and Hf is a subordinator with Laplace exponent f. In the case where X is a pure birth process, we study the form of the distribution, the intertimes between successive jumps, and the condition of explosion (also in the case of killed subordinators). We also investigate the case where X represents a death process (linear or sublinear) and study the extinction probabilities as a function of the initial population size n0. Finally, the subordinated linear birth–death process is considered. Special attention is devoted to the case where birth and death rates coincide; the sojourn times are also analysed.
This paper is devoted to probabilistic cellular automata (PCAs) on N,Z or Z / nZ, depending on two neighbors with a general alphabet E (finite or infinite, discrete or not). We study the following question: under which conditions does a PCA possess a Markov chain as an invariant distribution? Previous results in the literature give some conditions on the transition matrix (for positive rate PCAs) when the alphabet E is finite. Here we obtain conditions on the transition kernel of a PCA with a general alphabet E. In particular, we show that the existence of an invariant Markov chain is equivalent to the existence of a solution to a cubic integral equation. One of the difficulties in passing from a finite alphabet to a general alphabet comes from the problem of measurability, and a large part of this work is devoted to clarifying these issues.
A Poisson line tessellation is observed in the window Wρ := B(0, π-1/2ρ1/2) for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest ball contained in the cell. Using the Poisson approximation, we compute the limit distributions of the largest and smallest order statistics for the inradii of all cells whose nuclei are contained in Wρ as ρ goes to ∞. We additionally prove that the limit shape of the cells minimising the inradius is a triangle.
We consider the stability of robust scheduling policies for multiclass queueing networks. These are open networks with arbitrary routeing matrix and several disjoint groups of queues in which at most one queue can be served at a time. The arrival and potential service processes and routeing decisions at the queues are independent, stationary, and ergodic. A scheduling policy is called robust if it does not depend on the arrival and service rates nor on the routeing probabilities. A policy is called throughput-optimal if it makes the system stable whenever the parameters are such that the system can be stable. We propose two robust policies: longest-queue scheduling and a new policy called longest-dominating-queue scheduling. We show that longest-queue scheduling is throughput-optimal for two groups of two queues. We also prove the throughput-optimality of longest-dominating-queue scheduling when the network topology is acyclic, for an arbitrary number of groups and queues.
In the full rectangular version of Gilbert's planar tessellation (see Gilbert (1967), Mackisack and Miles (1996), and Burridge et al. (2013)), lines extend either horizontally (with east- and west-growing rays) or vertically (north- and south-growing rays) from seed points which form a stationary Poisson point process, each ray stopping when it meets another ray that has blocked its path. In the half-Gilbert rectangular version, east- and south-growing rays, whilst having the potential to block each other, do not interact with west and north rays, and vice versa. East- and south-growing rays have a reciprocality of blocking, as do west and north. In this paper we significantly expand and simplify the half-Gilbert analytic results that we gave in Burridge et al. (2013). We also show how the idea of reciprocality of blocking between rays can be used in a much wider context, with rays not necessarily orthogonal and with seeds that produce more than two rays.
It is shown that the celebrated result of Sparre Andersen for random walks and Lévy processes has intriguing consequences when the last time of the process in (-∞, 0], say σ, is added to the picture. In the case of no positive jumps this leads to six random times, all of which have the same distribution—the uniform distribution on [0, σ]. Surprisingly, this result does not appear in the literature, even though it is based on some classical observations concerning exchangeable increments.
During the course of a day an individual typically mixes with different groups of individuals. Epidemic models incorporating population structure with individuals being able to infect different groups of individuals have received extensive attention in the literature. However, almost exclusively the models assume that individuals are able to simultaneously infect members of all groups, whereas in reality individuals will typically only be able to infect members of any group they currently reside in. In this paper we develop a model where individuals move between a community and their household during the course of the day, only infecting within their current group. By defining a novel branching process approximation with an explicit expression for the probability generating function of the offspring distribution, we are able to derive the probability of a major epidemic outbreak.
We consider an extension of the Poisson hail model where the service speed is either 0 or ∞ at each point of the Euclidean space. We use and develop tools pertaining to sub-additive ergodic theory in order to establish shape theorems for the growth of the ice-heap under light tail assumptions on the hailstone characteristics. The asymptotic shape depends on the statistics of the hailstones, the intensity of the underlying Poisson point process, and on the geometrical properties of the zero speed set.
We consider a game with K ≥ 2 players, each having an integer-valued fortune. On each round, a pair (i,j) among the players with nonzero fortunes is chosen to play and the winner is decided by flipping a fair coin (independently of the process up to that time). The winner then receives a unit from the loser. All other players' fortunes remain the same. (Once a player's fortune reaches 0, this player is out of the game.) The game continues until only one player wins all. The choices of pairs represent the control present in the problem. While it is known that the expected time to ruin (i.e. expected duration of the game) is independent of the choices of pairs (i,j) (the strategies), our objective is to find a strategy which maximizes the variance of the time to ruin. We show that the maximum variance is uniquely attained by the (optimal) strategy, which always selects a pair of players who have currently the largest fortunes. An explicit formula for the maximum value function is derived. By constructing a simple martingale, we also provide a short proof of a result of Ross (2009) that the expected time to ruin is independent of the strategies. A brief discussion of the (open) problem of minimizing the variance of the time to ruin is given.