We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a migration process whose singleton process is a time-dependent Markov replacement process. For the singleton process, which may be treated as either open or closed, we study the limiting distribution, the distribution of the time to replacement and related quantities. For a replacement process in equilibrium we obtain a version of Little's law and we provide conditions for reversibility. For the resulting linear population process we characterize exponential ergodicity for two types of environmental behaviour, i.e. either convergent or cyclic, and finally for large population sizes a diffusion approximation analysis is provided.
Formulas for the asymptotic failure rate, long-term average availability, and the limiting distribution of the number of long ‘outages' are obtained for a general class of two-state reliability models for maintained systems. The results extend known formulas for alternating renewal processes to a wider class of point processes that includes sequences of dependent or non-identically distributed operating and repair times.
A trivariate stochastic process is considered, describing a sequence of random shocks {Xn} at random intervals {Yn} with random system state {Jn}. The triviariate stochastic process satisfies a Markov renewal property in that the magnitude of shocks and the shock intervals are correlated pairwise and the corresponding joint distributions are affected by transitions of the system state which occur after each shock according to a Markov chain. Of interest is a system lifetime terminated whenever a shock magnitude exceeds a prespecified level z. The distribution of system lifetime, its moments and a related exponential limit theorem are derived explicitly. A similar transform analysis is conducted for a second type of system lifetime with system failures caused by the cumulative magnitude of shocks exceeding a fixed level z.
We consider scheduling a batch of jobs with stochastic processing times on single or parallel machines, with the objective of minimizing the expected holding costs. Preemption of jobs is allowed, and the holding costs of preempted jobs may depend on the stage of completion. We provide a new proof of the optimality of a Gittins priority rule for the single machine and use the same proof to show that the Gittins priority rule is nearly optimal for parallel machines.
It is shown by means of several examples that probability metrics are a useful tool to study the asymptotic behaviour of (stochastic) recursive algorithms. The basic idea of this approach is to find a ‘suitable' probability metric which yields contraction properties of the transformations describing the limits of the algorithm. In order to demonstrate the wide range of applicability of this contraction method we investigate examples from various fields, some of which have already been analysed in the literature.
Let X(t) be a non-homogeneous birth and death process. In this paper we develop a general method of estimating bounds for the state probabilities for X(t), based on inequalities for the solutions of the forward Kolmogorov equations. Specific examples covered include simple estimates of Pr(X(t) < j | X(0) = k) for the M(t)/M(t)/N/0 and M(t)/M(t)/N queue-length processes.
This paper deals with a service system in which the processor must serve two types of impatient units. In the case of blocking, the first type units leave the system whereas the second type units enter a pool and wait to be processed later.
We develop an exhaustive analysis of the system including embedded Markov chain, fundamental period and various classical stationary probability distributions. More specific performance measures, such as the number of lost customers and other quantities, are also considered. The mathematical analysis of the model is based on the theory of Markov renewal processes, in Markov chains of M/G/l type and in expressions of ‘Takács' equation' type.
Many applications of smoothed perturbation analysis lead to estimators with hazard rate functions of underlying distributions. A key assumption used in proving unbiasedness of the resulting estimator is that the hazard rate function be bounded, a restrictive assumption which excludes all distributions with finite support. Here, we prove through a simple example that this assumption can in fact be removed.
Let ψ(u) be the ruin probability in a risk process with initial reserve u, Poisson arrival rate β, claim size distribution B and premium rate p(x) at level x of the reserve. Let y(x) be the non-zero solution of the local Lundberg equation . It is shown that is non-decreasing and that log ψ(u) ≈ –I(u) in a slow Markov walk limit. Though the results and conditions are of large deviations type, the proofs are elementary and utilize piecewise comparisons with standard risk processes with a constant p. Also simulation via importance sampling using local exponential change of measure defined in terms of the γ(x) is discussed and some numerical results are presented.
We study a fundamental feature of the generalized semi-Markov processes (GSMPs), called event coupling. The event coupling reflects the logical behavior of a GSMP that specifies which events can be affected by any given event. Based on the event-coupling property, GSMPs can be classified into three classes: the strongly coupled, the hierarchically coupled, and the decomposable GSMPs. The event-coupling property on a sample path of a GSMP can be represented by the event-coupling trees. With the event-coupling tree, we can quantify the effect of a single perturbation on a performance measure by using realization factors. A set of equations that specifies the realization factors is derived. We show that the sensitivity of steady-state performance with respect to a parameter of an event lifetime distribution can be obtained by a simple formula based on realization factors and that the sample-path performance sensitivity converges to the sensitivity of the steady-state performance with probability one as the length of the sample path goes to infinity. This generalizes the existing results of perturbation analysis of queueing networks to GSMPs.
We consider a multiserver queuing process specified by i.i.d. interarrival time, batch size and service time sequences. In the case that different servers have different service time distributions we say the system is heterogeneous. In this paper we establish conditions for the queuing process to be characterized as a geometrically Harris recurrent Markov chain, and we characterize the stationary probabilities of large queue lengths and waiting times. The queue length is asymptotically geometric and the waiting time is asymptotically exponential. Our analysis is a generalization of the well-known characterization of the GI/G/1 queue obtained using classical probabilistic techniques of exponential change of measure and renewal theory.
Availability is an important characteristic of a system. Different types of availability are defined. For the case when a sequence of bivariate random variables of lifetime and repair time are i.i.d. certain properties have been established previously. In practice, however, we need to consider the situation where these bivariate random variables are independent but not identically distributed. Properties of two measures of availability for the i.i.d. case are extended to this more general case.
We consider M/G/1 queues with exhaustive service and generalized vacations, where at the end of every busy period the server either follows a mixed vacation policy from a given vacation policy set or stays idle. A simple recursive formula for the moments of the stationary waiting time is provided. This formula results in the decomposition property for our model immediately. It also enables us to derive many existing results for the M/G/1 queues with various vacation policies.
We continue our investigation of the batch arrival-heterogeneous multiserver queue begun in Part I. In a general setting we prove the positive Harris recurrence of the system, and with no additional conditions we prove logarithmic tail limits for the stationary queue length and waiting time distributions.
Stochastic models for the origin and extinction of species have been rather neglected in applied probability. As an alternative to modelling speciation and extinction as intrinsically random, I shall describe and show simulations of a rulebased model. This involves mathematical representations of notions such as genetic type of species, environmental niche, fitness of a species in a niche, and adaptation. There are underlying random mechanisms for changes of niche sizes and for disconnection and reconnection of geographical regions, and these ultimately drive the evolution of species.
Other approaches to mathematical modelling of evolution are briefly mentioned.
This paper introduces a new form of local balance and the corresponding product-form results. It is shown that these new product-form results allow capacity constraints at the stations of a queueing network without reversibility assumptions and without special blocking protocols. In particular, exact product-form results for heavily loaded queueing networks are obtained.
This paper focuses on the stability of open queueing systems under stationary ergodic assumptions. It defines a set of conditions, the monotone separable framework, ensuring that the stability region is given by the following saturation rule: ‘saturate' the queues which are fed by the external arrival stream; look at the ‘intensity' μ of the departure stream in this saturated system; then stability holds whenever the intensity of the arrival process, say λ satisfies the condition λ < μ, whereas the network is unstable if λ > μ. Whenever the stability condition is satisfied, it is also shown that certain state variables associated with the network admit a finite stationary regime which is constructed pathwise using a Loynes-type backward argument. This framework involves two main pathwise properties, external monotonicity and separability, which are satisfied by several classical queueing networks. The main tool for the proof of this rule is subadditive ergodic theory. It is shown that, for various problems, the proposed method provides an alternative to the methods based on Harris recurrence and regeneration; this is particularly true in the Markov case, where we show that the distributional assumptions commonly made on service or arrival times so as to ensure Harris recurrence can in fact be relaxed.
Hunt and Kurtz [9] consider a loss network as the number of circuits and the offered traffics become large. They prove a functional law of large numbers for such a network and illustrate their results with some simple examples. In this paper we apply their results to slightly more complicated examples to illustrate other, and sometimes surprising, behaviour of the loss networks in heavy traffic. The networks we consider operate under somewhat unusual routing rules but this is to enable us to produce the behaviour in networks with only a few links. In larger, real-world networks it is likely that much more ‘natural' and intuitively appealing routing rules could produce similar undesirable behaviour.
The DNA of higher animals replicates by an interesting mechanism. Enzymes recognise specific sites randomly scattered on the molecule and establish a bidirectional process of unwinding and replication from these sites. We investigate the limiting distribution of the completion time for this process by considering related coverage problems investigated by Janson (1983) and Hall (1988).
A variety of performance measures of a GI/G/1 queue are explicitly related to the idle-period distribution of the queue, suggesting that the system analysis can be accomplished by the analysis of the idle period. However, the ‘stand-alone' relationship for the idle-period distribution of the GI/G/1 queue (i.e. the counterpart of Lindley's equation) has not been found in the literature. In this paper we develop a non-linear integral equation for the idle period distribution of the GI/G/1 queue. We also show that this non-linear system defines a unique solution. This development makes possible the analysis of the GI/G/1 queue in a different perspective.