We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using recent results by Măcinic, Papadima and Popescu, and a refinement of an older construction of ours, we determine the monodromy action on $H^{1}(F(G),\mathbb{C})$, where $F(G)$ denotes the Milnor fiber of a hyperplane arrangement associated to an irreducible complex reflection group $G$.
We prove some vanishing theorems for the cohomology groups of local systems associated to Laurent polynomials. In particular, we extend one of the results of Gelfand et al. [Generalized Euler integrals and$A$-hypergeometric functions, Adv. Math. 84 (1990), 255–271] to various directions. In the course of the proof, some properties of vanishing cycles of perverse sheaves and twisted Morse theory are used.
The detection of the bifurcation set of polynomial mapping ℝn → ℝp, n ⩾ p, in more than two variables remains an unsolved problem. In this note we provide a solution for n = p + 1 ⩾ 3.
We introduce the notion of regularity for a relative holonomic ${\mathcal{D}}$-module in the sense of Monteiro Fernandes and Sabbah [Internat. Math. Res. Not. (21) (2013), 4961–4984]. We prove that the solution functor from the bounded derived category of regular relative holonomic modules to that of relative constructible complexes is essentially surjective by constructing a right quasi-inverse functor. When restricted to relative ${\mathcal{D}}$-modules underlying a regular mixed twistor ${\mathcal{D}}$-module, this functor satisfies the left quasi-inverse property.
Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.
A log symplectic manifold is a complex manifold equipped with a complex symplectic form that has simple poles on a hypersurface. The possible singularities of such a hypersurface are heavily constrained. We introduce the notion of an elliptic point of a log symplectic structure, which is a singular point at which a natural transversality condition involving the modular vector field is satisfied, and we prove a local normal form for such points that involves the simple elliptic surface singularities $\widetilde{E}_{6},\widetilde{E}_{7}$ and $\widetilde{E}_{8}$. Our main application is to the classification of Poisson brackets on Fano fourfolds. For example, we show that Feigin and Odesskii’s Poisson structures of type $q_{5,1}$ are the only log symplectic structures on projective four-space whose singular points are all elliptic.
We show that the finiteness of the fundamental groups of the smooth locus of lower dimensional log Fano pairs would imply the finiteness of the local fundamental group of Kawamata log terminal (klt) singularities. As an application, we verify that the local fundamental group of a three-dimensional klt singularity and the fundamental group of the smooth locus of a three-dimensional Fano variety with canonical singularities are always finite.
We show that there exist an infinite number of topological orbits in classes of complex map germs from the plane to the plane that have a representative of type (xy, xa + yb), with (a, b) ≠ = (2, 3) or (2, 5). Our key tool to prove this existence is the existence (or not) of stems in the class; these germs are not -finitely determined and allow the determination of a non-finite number of topological orbits. We also show that the class (xy, x2 + y5) has two topological orbits.
We prove that the tautological ring of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$, the moduli space of $n$-pointed genus two curves of compact type, does not have Poincaré duality for any $n\geqslant 8$. This result is obtained via a more general study of the cohomology groups of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$. We explain how the cohomology can be decomposed into pieces corresponding to different local systems and how the tautological cohomology can be identified within this decomposition. Our results allow the computation of $H^{k}({\mathcal{M}}_{2,n}^{\mathsf{ct}})$ for any $k$ and $n$ considered both as $\mathbb{S}_{n}$-representation and as mixed Hodge structure/$\ell$-adic Galois representation considered up to semi-simplification. A consequence of our results is also that all even cohomology of $\overline{{\mathcal{M}}}_{2,n}$ is tautological for $n<20$, and that the tautological ring of $\overline{{\mathcal{M}}}_{2,n}$ fails to have Poincaré duality for all $n\geqslant 20$. This improves and simplifies results of the author and Orsola Tommasi.
The purpose of this paper is to give an explicit formula of the Łojasiewicz exponent of an isolated weighted homogeneous singularity in terms of its weights.
To any Nash germ invariant under right composition with a linear action of a finite group, we associate its equivariant zeta functions, inspired from motivic zeta functions, using the equivariant virtual Poincaré series as a motivic measure. We show Denef–Loeser formulas for the equivariant zeta functions and prove that they are invariants for equivariant blow-Nash equivalence via equivariant blow-Nash isomorphisms. Equivariant blow-Nash equivalence between invariant Nash germs is defined as a generalization involving equivariant data of the blow-Nash equivalence.
An affine symplectic singularity $X$ with a good $\mathbf{C}^{\ast }$-action is called a conical symplectic variety. In this paper we prove the following theorem. For fixed positive integers $N$ and $d$, there are only a finite number of conical symplectic varieties of dimension $2d$ with maximal weights $N$, up to an isomorphism. To prove the main theorem, we first relate a conical symplectic variety with a log Fano Kawamata log terminal (klt) pair, which has a contact structure. By the boundedness result for log Fano klt pairs with fixed Cartier index, we prove that conical symplectic varieties of a fixed dimension and with a fixed maximal weight form a bounded family. Next we prove the rigidity of conical symplectic varieties by using Poisson deformations.
We show that the possible jump of the order in an 1-parameter deformation family of (possibly nonisolated) hypersurface singularities, with constant Lê numbers, is controlled by the powers of the deformation parameter. In particular, this applies to families of aligned singularities with constant topological type—a class for which the Lê numbers are “almost” constant. In the special case of families with isolated singularities—a case for which the constancy of the Lê numbers is equivalent to the constancy of the Milnor number—the result was proved by Greuel, Plénat, and Trotman.
As an application, we prove equimultiplicity for new families of nonisolated hypersurface singularities with constant topological type, answering partially the Zariski multiplicity conjecture.
Given a mixed Hodge module $\mathcal{N}$ and a meromorphic function $f$ on a complex manifold, we associate to these data a filtration (the irregular Hodge filtration) on the exponentially twisted holonomic module $\mathcal{N}\otimes \mathcal{E}^{f}$, which extends the construction of Esnault et al. ($E_{1}$-degeneration of the irregular Hodge filtration (with an appendix by Saito), J. reine angew. Math. (2015),doi:10.1515/crelle-2014-0118). We show the strictness of the push-forward filtered ${\mathcal{D}}$-module through any projective morphism ${\it\pi}:X\rightarrow Y$, by using the theory of mixed twistor ${\mathcal{D}}$-modules of Mochizuki. We consider the example of the rescaling of a regular function $f$, which leads to an expression of the irregular Hodge filtration of the Laplace transform of the Gauss–Manin systems of $f$ in terms of the Harder–Narasimhan filtration of the Kontsevich bundles associated with $f$.
Consider a smooth quasi-projective variety $X$ equipped with a $\mathbb{C}^{\ast }$-action, and a regular function $f:X\rightarrow \mathbb{C}$ which is $\mathbb{C}^{\ast }$-equivariant with respect to a positive weight action on the base. We prove the purity of the mixed Hodge structure and the hard Lefschetz theorem on the cohomology of the vanishing cycle complex of $f$ on proper components of the critical locus of $f$, generalizing a result of Steenbrink for isolated quasi-homogeneous singularities. Building on work by Kontsevich and Soibelman, Nagao, and Efimov, we use this result to prove the quantum positivity conjecture for cluster mutations for all quivers admitting a positively graded nondegenerate potential. We deduce quantum positivity for all quivers of rank at most 4; quivers with nondegenerate potential admitting a cut; and quivers with potential associated to triangulations of surfaces with marked points and nonempty boundary.
We consider the system F4 (a, b, c) of differential equations annihilating Appell's hypergeometric series F4(a,b,c;x). We find the integral representations for four linearly independent solutions expressed by the hypergeometric series F4. By using the intersection forms of twisted (co)homology groups associated with them, we provide the monodromy representation of F4(a, b, c) and the twisted period relations for the fundamental systems of solutions of F4.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
We study the interplay between the cohomology of the Koszul complex of the partial derivatives of a homogeneous polynomial f and the pole order filtration P on the cohomology of the open set U = ℙn \ D, with D the hypersurface defined by f = 0. The relation is expressed by some spectral sequences. These sequences may, on the one hand, in many cases be used to determine the filtration P for curves and surfaces and, on the other hand, to obtain information about the syzygies involving the partial derivatives of the polynomial f. The case of a nodal hypersurface D is treated in terms of the defects of linear systems of hypersurfaces of various degrees passing through the nodes of D. When D is a nodal surface in ℙ3, we show that F2H3(U) ≠ P2H3(U) as soon as the degree of D is at least 4.
We introduce a dual logarithmic residue map for hypersurface singularities and use it to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by an algebraic characterization of hypersurfaces that are normal crossing in codimension one. For free divisors, we relate the latter condition to other natural conditions involving the Jacobian ideal and the normalization. This leads to an algebraic characterization of normal crossing divisors. As a side result, we describe all free divisors with Gorenstein singular locus.