We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form
$f=f^1\cdots f^{k_0}$
is uniquely determined by the Newton boundaries of
$f^1,\ldots , f^{k_0}$
if
$\{f^{k_1}=\cdots =f^{k_m}=0\}$
is a nondegenerate complete intersection variety for any
$k_1,\ldots ,k_m\in \{1,\ldots , k_0\}$
.
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser’s Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.
We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed subscheme Z in terms of log resolutions and derive applications regarding the local cohomological dimension, the Du Bois complex, local vanishing and reflexive differentials associated to Z.
Let
$(\mathbb {D}^2,\mathscr {F},\{0\})$
be a singular holomorphic foliation on the unit bidisc
$\mathbb {D}^2$
defined by the linear vector field
$$ \begin{align*} z \frac{\partial}{\partial z}+ \unicode{x3bb} w \frac{\partial}{\partial w}, \end{align*} $$
where
$\unicode{x3bb} \in \mathbb {C}^*$
. Such a foliation has a non-degenerate singularity at the origin
${0:=(0,0) \in \mathbb {C}^2}$
. Let T be a harmonic current directed by
$\mathscr {F}$
which does not give mass to any of the two separatrices
$(z=0)$
and
$(w=0)$
. Assume
$T\neq 0$
. The Lelong number of T at
$0$
describes the mass distribution on the foliated space. In 2014 Nguyên (see [16]) proved that when
$\unicode{x3bb} \notin \mathbb {R}$
, that is, when
$0$
is a hyperbolic singularity, the Lelong number at
$0$
vanishes. Suppose the trivial extension
$\tilde {T}$
across
$0$
is
$dd^c$
-closed. For the non-hyperbolic case
$\unicode{x3bb} \in \mathbb {R}^*$
, we prove that the Lelong number at
$0$
:
(1) is strictly positive if
$\unicode{x3bb}>0$
;
(2) vanishes if
$\unicode{x3bb} \in \mathbb {Q}_{<0}$
;
(3) vanishes if
$\unicode{x3bb} <0$
and T is invariant under the action of some cofinite subgroup of the monodromy group.
In this paper, we prove the Fukui–Kurdyka–Paunescu conjecture, which says that sub-analytic arc-analytic bi-Lipschitz homeomorphisms preserve the multiplicities of real analytic sets. We also prove several other results on the invariance of the multiplicity (respectively, degree) of real and complex analytic (respectively, algebraic) sets. For instance, still in the real case, we prove a global version of the Fukui–Kurdyka–Paunescu conjecture. In the complex case, one of the results that we prove is the following: if $(X,0)\subset (\mathbb {C}^{n},0)$, $(Y,0)\subset (\mathbb {C}^{m},0)$ are germs of analytic sets and $h\colon (X,0)\to (Y,0)$ is a semi-bi-Lipschitz homeomorphism whose graph is a complex analytic set, then the germs $(X,0)$ and $(Y,0)$ have the same multiplicity. One of the results that we prove in the global case is the following: if $X\subset \mathbb {C}^{n}$, $Y\subset \mathbb {C}^{m}$ are algebraic sets and $\phi \colon X\to Y$ is a semi-algebraic semi-bi-Lipschitz homeomorphism such that the closure of its graph in $\mathbb {P}^{n+m}(\mathbb {C})$ is an orientable homological cycle, then ${\rm deg}(X)={\rm deg}(Y)$.
Let $ {\mathbb {C}}^{n+1}_o$ denote the germ of $ {\mathbb {C}}^{n+1}$ at the origin. Let $V$ be a hypersurface germ in $ {\mathbb {C}}^{n+1}_o$ and $W$ a deformation of $V$ over $ {\mathbb {C}}_{o}^{m}$. Under the hypothesis that $W$ is a Newton non-degenerate deformation, in this article we prove that $W$ is a $\mu$-constant deformation if and only if $W$ admits a simultaneous embedded resolution. This result gives a lot of information about $W$, for example, the topological triviality of the family $W$ and the fact that the natural morphism $(\operatorname {W( {\mathbb {C}}_{o})}_{m})_{{\rm red}}\rightarrow {\mathbb {C}}_{o}$ is flat, where $\operatorname {W( {\mathbb {C}}_{o})}_{m}$ is the relative space of $m$-jets. On the way to the proof of our main result, we give a complete answer to a question of Arnold on the monotonicity of Newton numbers in the case of convenient Newton polyhedra.
We undertake a systematic study of Lipschitz normally embedded normal complex surface germs. We prove, in particular, that the topological type of such a germ determines the combinatorics of its minimal resolution which factors through the blowup of its maximal ideal and through its Nash transform, as well as the polar curve and the discriminant curve of a generic plane projection, thus generalizing results of Spivakovsky and Bondil that were known for minimal surface singularities. In an appendix, we give a new example of a Lipschitz normally embedded surface singularity.
We prove a relative Lefschetz–Verdier theorem for locally acyclic objects over a Noetherian base scheme. This is done by studying duals and traces in the symmetric monoidal
$2$
-category of cohomological correspondences. We show that local acyclicity is equivalent to dualisability and deduce that duality preserves local acyclicity. As another application of the category of cohomological correspondences, we show that the nearby cycle functor over a Henselian valuation ring preserves duals, generalising a theorem of Gabber.
For
$G = \mathrm {GL}_2, \mathrm {SL}_2, \mathrm {PGL}_2$
we compute the intersection E-polynomials and the intersection Poincaré polynomials of the G-character variety of a compact Riemann surface C and of the moduli space of G-Higgs bundles on C of degree zero. We derive several results concerning the P=W conjectures for these singular moduli spaces.
In this paper, by the moving spheres method, Caffarelli-Silvestre extension formula and blow-up analysis, we study the local behaviour of nonnegative solutions to fractional elliptic equations
\begin{align*} (-\Delta)^{\alpha} u =f(u),~~ x\in \Omega\backslash \Gamma, \end{align*}
where $0<\alpha <1$, $\Omega = \mathbb {R}^{N}$ or $\Omega$ is a smooth bounded domain, $\Gamma$ is a singular subset of $\Omega$ with fractional capacity zero, $f(t)$ is locally bounded and positive for $t\in [0,\,\infty )$, and $f(t)/t^{({N+2\alpha })/({N-2\alpha })}$ is nonincreasing in $t$ for large $t$, rather than for every $t>0$. Our main result is that the solutions satisfy the estimate
\begin{align*} f(u(x))/ u(x)\leq C d(x,\Gamma)^{{-}2\alpha}. \end{align*}
This estimate is new even for $\Gamma =\{0\}$. As applications, we derive the spherical Harnack inequality, asymptotic symmetry, cylindrical symmetry of the solutions.
We consider the relative Bruce–Roberts number $\mu _{\textrm {BR}}^{-}(f,\,X)$ of a function on an isolated hypersurface singularity $(X,\,0)$. We show that $\mu _{\textrm {BR}}^{-}(f,\,X)$ is equal to the sum of the Milnor number of the fibre $\mu (f^{-1}(0)\cap X,\,0)$ plus the difference $\mu (X,\,0)-\tau (X,\,0)$ between the Milnor and the Tjurina numbers of $(X,\,0)$. As an application, we show that the usual Bruce–Roberts number $\mu _{\textrm {BR}}(f,\,X)$ is equal to $\mu (f)+\mu _{\textrm {BR}}^{-}(f,\,X)$. We also deduce that the relative logarithmic characteristic variety $LC(X)^{-}$, obtained from the logarithmic characteristic variety $LC(X)$ by eliminating the component corresponding to the complement of $X$ in the ambient space, is Cohen–Macaulay.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
The purpose of this note is to correct a mistake in the article “A curve selection lemma in spaces of arcs and the image of the Nash map” Compositio Math. 142 (2006), 119–130. It is due to an overlooked hypothesis in the definition of generically stable subset of the space of arcs X∞ of a variety X defined over a perfect field k.
We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.
We relate the analytic spread of a module expressed as the direct sum of two submodules with the analytic spread of its components. We also study a class of submodules whose integral closure can be expressed in terms of the integral closure of its row ideals, and therefore can be obtained by means of a simple computer algebra procedure. In particular, we analyze a class of modules, not necessarily of maximal rank, whose integral closure is determined by the family of Newton polyhedra of their row ideals.
Vanishing cycles, introduced over half a century ago, are a fundamental tool for studying the topology of complex hypersurface singularity germs, as well as the change in topology of a degenerating family of projective manifolds. More recently, vanishing cycles have found deep applications in enumerative geometry, representation theory, applied algebraic geometry, birational geometry, etc. In this survey, we introduce vanishing cycles from a topological perspective and discuss some of their applications.
We prove the Lipman–Zariski conjecture for complex surface singularities with $p_{g}-g-b\leqslant 2$. Here $p_{g}$ is the geometric genus, $g$ is the sum of the genera of exceptional curves and $b$ is the first Betti number of the dual graph. This improves on a previous result of the second author. As an application, we show that a compact complex surface with a locally free tangent sheaf is smooth as soon as it admits two generically linearly independent twisted vector fields and its canonical sheaf has at most two global sections.
We compute the Hodge ideals of $\mathbb{Q}$-divisors in terms of the $V$-filtration induced by a local defining equation, inspired by a result of Saito in the reduced case. We deduce basic properties of Hodge ideals in this generality, and relate them to Bernstein–Sato polynomials. As a consequence of our study we establish general properties of the minimal exponent, a refined version of the log canonical threshold, and bound it in terms of discrepancies on log resolutions, addressing a question of Lichtin and Kollár.
We prove that for each characteristic direction $[v]$ of a tangent to the identity diffeomorphism of order $k+1$ in $(\mathbb{C}^{2},0)$ there exist either an analytic curve of fixed points tangent to $[v]$ or $k$ parabolic manifolds where all the orbits are tangent to $[v]$, and that at least one of these parabolic manifolds is or contains a parabolic curve.