We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the multiple Eisenstein series introduced by Gangl, Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations for multiple Eisenstein series by revealing an explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov co-product on Hopf algebras of iterated integrals.
An initial-boundary value problem for a time-fractional diffusion equation is discretized in space, using continuous piecewise-linear finite elements on a domain with a re-entrant corner. Known error bounds for the case of a convex domain break down, because the associated Poisson equation is no longer $H^{2}$-regular. In particular, the method is no longer second-order accurate if quasi-uniform triangulations are used. We prove that a suitable local mesh refinement about the re-entrant corner restores second-order convergence. In this way, we generalize known results for the classical heat equation.
In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (nonfractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.
We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$-adic hypergeometric function for any odd prime $d$.
We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)15 for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0, 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.
We present some correlated fractional counting processes on a finite-time interval. This will be done by considering a slight generalization of the processes in Borges et al. (2012). The main case concerns a class of space-time fractional Poisson processes and, when the correlation parameter is equal to 0, the univariate distributions coincide with those of the space-time fractional Poisson process in Orsingher and Polito (2012). On the one hand, when we consider the time fractional Poisson process, the multivariate finite-dimensional distributions are different from those presented for the renewal process in Politi et al. (2011). We also consider a case concerning a class of fractional negative binomial processes.
In this paper we consider the problem of existence of mild solutions to semilinear fractional heat equations with non-local initial conditions. We provide sufficient conditions for existence and regularity of such solutions.
We study a renewal risk model in which the surplus process of the insurance company is modelled by a compound fractional Poisson process. We establish the long-range dependence property of this nonstationary process. Some results for ruin probabilities are presented under various assumptions on the distribution of the claim sizes.
We prove that there is a correspondence between Ramanujan-type formulas for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}1/\pi $ and formulas for Dirichlet $L$-values. Our method also allows us to reduce certain values of the Epstein zeta function to rapidly converging hypergeometric functions. The Epstein zeta functions were previously studied by Glasser and Zucker.
We consider the classical problem of finding the best uniform approximation by polynomials of $1/(x-a)^2,$ where $a>1$ is given, on the interval $[-\! 1,1]$. First, using symbolic computation tools we derive the explicit expressions of the polynomials of best approximation of low degrees and then give a parametric solution of the problem in terms of elliptic functions. Symbolic computation is invoked then once more to derive a recurrence relation for the coefficients of the polynomials of best uniform approximation based on a Pell-type equation satisfied by the solutions.
We consider two fractional versions of a family of nonnegative integer-valued processes. We prove that their probability mass functions solve fractional Kolmogorov forward equations, and we show the overdispersion of these processes. As particular examples in this family, we can define fractional versions of some processes in the literature as the Pólya-Aeppli process, the Poisson inverse Gaussian process, and the negative binomial process. We also define and study some more general fractional versions with two fractional parameters.
In this paper we analyze different forms of fractional relaxation equations of order ν ∈ (0, 1), and we derive their solutions in both analytical and probabilistic forms. In particular, we show that these solutions can be expressed as random boundary crossing probabilities of various types of stochastic process, which are all related to the Brownian motion B. In the special case ν = ½, the fractional relaxation is shown to coincide with Pr{sup0≤s≤tB(s) < U} for an exponential boundary U. When we generalize the distributions of the random boundary, passing from the exponential to the gamma density, we obtain more and more complicated fractional equations.
We provide evaluations of several recently studied higher and multiple Mahler measures using log-sine integrals. This is complemented with an analysis of generating functions and identities for log-sine integrals which allows the evaluations to be expressed in terms of zeta values or more general polylogarithmic terms. The machinery developed is then applied to evaluation of further families of multiple Mahler measures.
We prove the conjectural relations between Mahler measures and L-values of elliptic curves of conductors 20 and 24. We also present new hypergeometric expressions for L-values of elliptic curves of conductors 27 and 36. Furthermore, we prove a new functional equation for the Mahler measure of the polynomial family (1+X) (1+Y )(X+Y )−αXY, α∈ℝ.
Generatingfunctions are used to derive formulas for the number of representations of a positive integer by each of the quadratic forms x12+x22+x32+2x42, x12+2x22+2x32+2x42, x12+x22+2x32+4x42 and x12+2x22+4x32+4x42. The formulas show that the number of representations by each form is always positive. Some of the analogous results involving sums of triangular numbers are also given.
where φ is the notation used by Ramanujan in his notebooks [15], and is the familiar notation of Whittaker and Watson [20, p. 464]. It is well known that [1, p. 102] (with a misprint corrected)
where denotes the ordinary or Gaussian hypergeometric function; k, 0 < k < 1, is the modulus; K is the complete elliptic integral of the first kind; and
where K′=K(k′) and is the complementary modulus. Thus, an evaluation of any one of the functions φ, , or K yields an evaluation of the other two functions. However, such evaluations may not be very explicit. For example, if K(k) is known for a certain value of k, it may be difficult or impossible to explicitly determine K′, and so q cannot be explicitly determined. Conversely, it may be possible to evaluate φ(q) for a certain value of q, but it may be impossible to determine the corresponding value of k. (Recall that [1, p. 102].)