To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\unicode[STIX]{x1D6F4}$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $\unicode[STIX]{x1D6E4}$ of $\unicode[STIX]{x1D6F4}$ acts on the $\mathsf{SU}(3)$-character variety of $\unicode[STIX]{x1D6F4}$. We show that the action is ergodic with respect to the natural symplectic measure on the character variety.
The aim of the article is to provide a characterization of the Haagerup property for locally compact, second countable groups in terms of actions on $\unicode[STIX]{x1D70E}$-finite measure spaces. It is inspired by the very first definition of amenability, namely the existence of an invariant mean on the algebra of essentially bounded, measurable functions on the group.
Motivated by the Bruhat and Cartan decompositions of general linear groups over local fields, we enumerate double cosets of the group of label-preserving automorphisms of a label-regular tree over the fixator of an end of the tree and over maximal compact open subgroups. This enumeration is used to show that every continuous homomorphism from the automorphism group of a label-regular tree has closed range.
Several well-known open questions (such as: are all groups sofic/hyperlinear?) have a common form: can all groups be approximated by asymptotic homomorphisms into the symmetric groups $\text{Sym}(n)$ (in the sofic case) or the finite-dimensional unitary groups $\text{U}(n)$ (in the hyperlinear case)? In the case of $\text{U}(n)$, the question can be asked with respect to different metrics and norms. This paper answers, for the first time, one of these versions, showing that there exist finitely presented groups which are not approximated by $\text{U}(n)$ with respect to the Frobenius norm $\Vert T\Vert _{\text{Frob}}=\sqrt{\sum _{i,j=1}^{n}|T_{ij}|^{2}},T=[T_{ij}]_{i,j=1}^{n}\in \text{M}_{n}(\mathbb{C})$. Our strategy is to show that some higher dimensional cohomology vanishing phenomena implies stability, that is, every Frobenius-approximate homomorphism into finite-dimensional unitary groups is close to an actual homomorphism. This is combined with existence results of certain nonresidually finite central extensions of lattices in some simple $p$-adic Lie groups. These groups act on high-rank Bruhat–Tits buildings and satisfy the needed vanishing cohomology phenomenon and are thus stable and not Frobenius-approximated.
We study lattice embeddings for the class of countable groups $\unicode[STIX]{x1D6E4}$ defined by the property that the largest amenable uniformly recurrent subgroup ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is continuous. When ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ comes from an extremely proximal action and the envelope of ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is coamenable in $\unicode[STIX]{x1D6E4}$, we obtain restrictions on the locally compact groups $G$ that contain a copy of $\unicode[STIX]{x1D6E4}$ as a lattice, notably regarding normal subgroups of $G$, product decompositions of $G$, and more generally dense mappings from $G$ to a product of locally compact groups.
We prove a super-rigidity result for algebraic representations over complete fields of irreducible lattices in products of groups and lattices with dense commensurator groups. We derive criteria for the non-linearity of such groups.
We extend classical density theorems of Borel and Dani–Shalom on lattices in semisimple, respectively solvable algebraic groups over local fields to approximate lattices. Our proofs are based on the observation that Zariski closures of approximate subgroups are close to algebraic subgroups. Our main tools are stationary joinings between the hull dynamical systems of discrete approximate subgroups and their Zariski closures.
We study lattices in a product $G=G_{1}\times \cdots \times G_{n}$ of non-discrete, compactly generated, totally disconnected locally compact (tdlc) groups. We assume that each factor is quasi just-non-compact, meaning that $G_{i}$ is non-compact and every closed normal subgroup of $G_{i}$ is discrete or cocompact (e.g. $G_{i}$ is topologically simple). We show that the set of discrete subgroups of $G$ containing a fixed cocompact lattice $\unicode[STIX]{x1D6E4}$ with dense projections is finite. The same result holds if $\unicode[STIX]{x1D6E4}$ is non-uniform, provided $G$ has Kazhdan’s property (T). We show that for any compact subset $K\subset G$, the collection of discrete subgroups $\unicode[STIX]{x1D6E4}\leqslant G$ with $G=\unicode[STIX]{x1D6E4}K$ and dense projections is uniformly discrete and hence of covolume bounded away from $0$. When the ambient group $G$ is compactly presented, we show in addition that the collection of those lattices falls into finitely many $\operatorname{Aut}(G)$-orbits. As an application, we establish finiteness results for discrete groups acting on products of locally finite graphs with semiprimitive local action on each factor. We also present several intermediate results of independent interest. Notably it is shown that if a non-discrete, compactly generated quasi just-non-compact tdlc group $G$ is a Chabauty limit of discrete subgroups, then some compact open subgroup of $G$ is an infinitely generated pro-$p$ group for some prime $p$. It is also shown that in any Kazhdan group with discrete amenable radical, the lattices form an open subset of the Chabauty space of closed subgroups.
We investigate how the fixed point algebra of a C*-dynamical system can differ from the underlying C*-algebra. For any exact group Γ and any infinite group Λ, we construct an outer action of Λ on the Cuntz algebra 𝒪2 whose fixed point algebra is almost equal to the reduced group C*-algebra ${\rm C}_{\rm r}^* (\Gamma)$. Moreover, we show that every infinite group admits outer actions on all Kirchberg algebras whose fixed point algebras fail the completely bounded approximation property.
We consider the notion of the graph product of actions of discrete groups $\{G_{v}\}$ on a $C^{\ast }$-algebra ${\mathcal{A}}$ and show that under suitable commutativity conditions the graph product action $\star _{\unicode[STIX]{x1D6E4}}\unicode[STIX]{x1D6FC}_{v}:\star _{\unicode[STIX]{x1D6E4}}G_{v}\curvearrowright {\mathcal{A}}$ has the Haagerup property if each action $\unicode[STIX]{x1D6FC}_{v}:G_{v}\curvearrowright {\mathcal{A}}$ possesses the Haagerup property. This generalizes the known results on graph products of groups with the Haagerup property. To accomplish this, we introduce the graph product of multipliers associated to the actions and show that the graph product of positive-definite multipliers is positive definite. These results have impacts on left-transformation groupoids and give an alternative proof of a known result for coarse embeddability. We also record a cohomological characterization of the Haagerup property for group actions.
Let $G$ be a locally compact group and $K$ a closed subgroup of $G$. Let $\unicode[STIX]{x1D6FE},$$\unicode[STIX]{x1D70B}$ be representations of $K$ and $G$ respectively. Moore’s version of the Frobenius reciprocity theorem was established under the strong conditions that the underlying homogeneous space $G/K$ possesses a right-invariant measure and the representation space $H(\unicode[STIX]{x1D6FE})$ of the representation $\unicode[STIX]{x1D6FE}$ of $K$ is a Hilbert space. Here, the theorem is proved in a more general setting assuming only the existence of a quasi-invariant measure on $G/K$ and that the representation spaces $\mathfrak{B}(\unicode[STIX]{x1D6FE})$ and $\mathfrak{B}(\unicode[STIX]{x1D70B})$ are Banach spaces with $\mathfrak{B}(\unicode[STIX]{x1D70B})$ being reflexive. This result was originally established by Kleppner but the version of the proof given here is simpler and more transparent.
In this paper, we revisit the theory of induced representations in the setting of locally compact quantum groups. In the case of induction from open quantum subgroups, we show that constructions of Kustermans and Vaes are equivalent to the classical, and much simpler, construction of Rieffel. We also prove in general setting the continuity of induction in the sense of Vaes with respect to weak containment.
In the realm of Delone sets in locally compact, second countable Hausdorff groups, we develop a dynamical systems approach in order to study the continuity behavior of measured quantities arising from point sets. A special focus is both on the autocorrelation, as well as on the density of states for random bounded operators. It is shown that for uniquely ergodic limit systems, the latter measures behave continuously with respect to the Chabauty–Fell convergence of hulls. In the special situation of Euclidean spaces, our results complement recent developments in describing spectra as topological limits: we show that the measured quantities under consideration can be approximated via periodic analogs.
If $G\ncong \operatorname{Alt}(\mathbb{N})$ is an inductive limit of finite alternating groups, then the indecomposable characters of $G$ are precisely the associated characters of the ergodic invariant random subgroups of $G$.
We prove an inverse theorem for the Gowers $U^{2}$-norm for maps $G\rightarrow {\mathcal{M}}$ from a countable, discrete, amenable group $G$ into a von Neumann algebra ${\mathcal{M}}$ equipped with an ultraweakly lower semi-continuous, unitarily invariant (semi-)norm $\Vert \cdot \Vert$. We use this result to prove a stability result for unitary-valued $\unicode[STIX]{x1D700}$-representations $G\rightarrow {\mathcal{U}}({\mathcal{M}})$ with respect to $\Vert \cdot \Vert$.
Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.
Hardy’s uncertainty principle for the Gabor transform is proved for locally compact abelian groups having noncompact identity component and groups of the form $\mathbb{R}^{n}\times K$, where $K$ is a compact group having irreducible representations of bounded dimension. We also show that Hardy’s theorem fails for a connected nilpotent Lie group $G$ which admits a square integrable irreducible representation. Further, a similar conclusion is made for groups of the form $G\times D$, where $D$ is a discrete group.
For a closed subgroup of a locally compact group the Rieffel induction process gives rise to a C*-correspondence over the C*-algebra of the subgroup. We study the associated Cuntz–Pimsner algebra and show that, by varying the subgroup to be open, compact, or discrete, there are connections with the Exel–Pardo correspondence arising from a cocycle, and also with graph algebras.
Let $T$ be a locally finite tree without vertices of degree $1$. We show that among the closed subgroups of $\text{Aut}(T)$ acting with a bounded number of orbits, the Chabauty-closure of the set of topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover, if all vertices of $T$ have degree ${\geqslant}3$, then the set of isomorphism classes of topologically simple closed subgroups of $\text{Aut}(T)$ acting doubly transitively on $\unicode[STIX]{x2202}T$ carries a natural compact Hausdorff topology inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are also presented.
The century-old extremal problem, solved by Carathéodory and Fejér, concerns a non-negative trigonometric polynomial $T(t) = a_0 + \sum\nolimits_{k = 1}^n {a_k} \cos (2\pi kt) + b_k\sin (2\pi kt){\ge}0$, normalized by a0=1, where the quantity to be maximized is the coefficient a1 of cos (2π t). Carathéodory and Fejér found that for any given degree n, the maximum is 2 cos(π/n+2). In the complex exponential form, the coefficient sequence (ck) ⊂ ℂ will be supported in [−n, n] and normalized by c0=1. Reformulating, non-negativity of T translates to positive definiteness of the sequence (ck), and the extremal problem becomes a maximization problem for the value at 1 of a normalized positive definite function c: ℤ → ℂ, supported in [−n, n]. Boas and Kac, Arestov, Berdysheva and Berens, Kolountzakis and Révész and, recently, Krenedits and Révész investigated the problem in increasing generality, reaching analogous results for all locally compact abelian groups. We prove an extension to all the known results in not necessarily commutative locally compact groups.