To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for every countable group, any sequence of approximate homomorphisms with values in permutations can be realized as the restriction of a sofic approximation of an orbit equivalence relation. Moreover, this orbit equivalence relation is uniquely determined by the invariant random subgroup of the approximate homomorphisms. We record applications of this result to recover various known stability and conjugacy characterizations for almost homomorphisms of amenable groups.
We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting $2$-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for $(d_0,d_1)$-semi-regular trees such that $d_0,d_1\in \Theta $, where $\Theta $ is an asymptotically dense set of positive integers.
Let $G$ be a compact Abelian group and $E$ a subset of the group $\widehat {G}$ of continuous characters of $G$. We study Arens regularity-related properties of the ideals $L_E^1(G)$ of $L^1(G)$ that are made of functions whose Fourier transform is supported on $E\subseteq \widehat {G}$. Arens regularity of $L_E^1(G)$, the centre of $L_E^1(G)^{\ast \ast }$ and the size of $L_E^1(G)^\ast /\mathcal {WAP}(L_E^1(G))$ are studied. We establish general conditions for the regularity of $L_E^1(G)$ and deduce from them that $L_E^1(G)$ is not strongly Arens irregular if $E$ is a small-2 set (i.e. $\mu \ast \mu \in L^1(G)$ for every $\mu \in M_E^1(G)$), which is not a $\Lambda (1)$-set, and it is extremely non-Arens regular if $E$ is not a small-2 set. We deduce also that $L_E^1(G)$ is not Arens regular when $\widehat {G}\setminus E$ is a Lust-Piquard set.
Let $l\in \mathbb {N}_{\ge 1}$ and $\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$ be an action of $\mathbb {Z}^l$ by automorphisms on a compact nilmanifold $\mathscr{N}$. We assume the action of every $\alpha (z)$ is ergodic for $z\in \mathbb {Z}^l\smallsetminus \{0\}$ and show that $\alpha $ satisfies exponential n-mixing for any integer $n\geq 2$. This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math.215 (2015), 127–159].
Let $G= N\rtimes H$ be a locally compact group which is a semi-direct product of a closed normal subgroup N and a closed subgroup H. The Bohr compactification ${\rm Bohr}(G)$ and the profinite completion ${\rm Prof}(G)$ of G are, respectively, isomorphic to semi-direct products $Q_1 \rtimes {\rm Bohr}(H)$ and $Q_2 \rtimes {\rm Prof}(H)$ for appropriate quotients $Q_1$ of ${\rm Bohr}(N)$ and $Q_2$ of ${\rm Prof}(N).$ We give a precise description of $Q_1$ and $Q_2$ in terms of the action of H on appropriate subsets of the dual space of N. In the case where N is abelian, we have ${\rm Bohr}(G)\cong A \rtimes {\rm Bohr}(H)$ and ${\rm Prof}(G)\cong B \rtimes {\rm Prof}(H),$ where A (respectively B) is the dual group of the group of unitary characters of N with finite H-orbits (respectively with finite image). Necessary and sufficient conditions are deduced for G to be maximally almost periodic or residually finite. We apply the results to the case where $G= \Lambda\wr H$ is a wreath product of discrete groups; we show in particular that, in case H is infinite, ${\rm Bohr}(\Lambda\wr H)$ is isomorphic to ${\rm Bohr}(\Lambda^{\rm Ab}\wr H)$ and ${\rm Prof}(\Lambda\wr H)$ is isomorphic to ${\rm Prof}(\Lambda^{\rm Ab} \wr H),$ where $\Lambda^{\rm Ab}=\Lambda/ [\Lambda, \Lambda]$ is the abelianisation of $\Lambda.$ As examples, we compute ${\rm Bohr}(G)$ and ${\rm Prof}(G)$ when G is a lamplighter group and when G is the Heisenberg group over a unital commutative ring.
Let ${\mathcal A}$ be a Banach algebra, and let $\varphi $ be a nonzero character on ${\mathcal A}$. For a closed ideal I of ${\mathcal A}$ with $I\not \subseteq \ker \varphi $ such that I has a bounded approximate identity, we show that $\operatorname {WAP}(\mathcal {A})$, the space of weakly almost periodic functionals on ${\mathcal A}$, admits a right (left) invariant $\varphi $-mean if and only if $\operatorname {WAP}(I)$ admits a right (left) invariant $\varphi |_I$-mean. This generalizes a result due to Neufang for the group algebra $L^1(G)$ as an ideal in the measure algebra $M(G)$, for a locally compact group G. Then we apply this result to the quantum group algebra $L^1({\mathbb G})$ of a locally compact quantum group ${\mathbb G}$. Finally, we study the existence of left and right invariant $1$-means on $ \operatorname {WAP}(\mathcal {T}_{\triangleright }({\mathbb G}))$.
Let $\mathbb {V}$ be a polarized variation of Hodge structure over a smooth complex quasi-projective variety $S$. In this paper, we give a complete description of the typical Hodge locus for such variations. We prove that it is either empty or equidistributed with respect to a natural differential form, the pull–push form. In particular, it is always analytically dense when the pull–push form does not vanish. When the weight is two, the Hodge numbers are $(q,p,q)$ and the dimension of $S$ is least $rq$, we prove that the typical locus where the Picard rank is at least $r$ is equidistributed in $S$ with respect to the volume form $c_q^r$, where $c_q$ is the $q$th Chern form of the Hodge bundle. We obtain also several equidistribution results of the typical locus in Shimura varieties: a criterion for the density of the typical Hodge loci of a variety in $\mathcal {A}_g$, equidistribution of certain families of CM points and equidistribution of Hecke translates of curves and surfaces in $\mathcal {A}_g$. These results are proved in the much broader context of dynamics on homogeneous spaces of Lie groups which are of independent interest. The pull–push form appears in this greater generality, we provide several tools to determine it, and we compute it in many examples.
In this paper, we address the problem of computing the topological entropy of a map $\psi : G \to G$, where G is a Lie group, given by some power $\psi (g) = g^k$, with k a positive integer. When G is abelian, $\psi $ is an endomorphism and its topological entropy is given by $h(\psi ) = \dim (T(G)) \log (k)$, where $T(G)$ is the maximal torus of G, as shown by Patrão [The topological entropy of endomorphisms of Lie groups. Israel J. Math.234 (2019), 55–80]. However, when G is not abelian, $\psi $ is no longer an endomorphism and these previous results cannot be used. Still, $\psi $ has some interesting symmetries, for example, it commutes with the conjugations of G. In this paper, the structure theory of Lie groups is used to show that $h(\psi ) = \dim (T)\log (k)$, where T is a maximal torus of G, generalizing the formula in the abelian case. In particular, the topological entropy of powers on compact Lie groups with discrete center is always positive, in contrast to what happens to endomorphisms of such groups, which always have null entropy.
Given an irreducible lattice $\Gamma $ in the product of higher rank simple Lie groups, we prove a co-finiteness result for the $\Gamma $-invariant von Neumann subalgebras of the group von Neumann algebra $\mathcal {L}(\Gamma )$, and for the $\Gamma $-invariant unital $C^*$-subalgebras of the reduced group $C^*$-algebra $C^*_{\mathrm {red}}(\Gamma )$. We use these results to show that: (i) every $\Gamma $-invariant von Neumann subalgebra of $\mathcal {L}(\Gamma )$ is generated by a normal subgroup; and (ii) given a weakly mixing unitary representation $\pi $ of $\Gamma $, every $\Gamma $-equivariant conditional expectation on $C^*_\pi (\Gamma )$ is the canonical conditional expectation onto the $C^*$-subalgebra generated by a normal subgroup.
Let G be a locally compact unimodular group, and let $\phi $ be some function of n variables on G. To such a $\phi $, one can associate a multilinear Fourier multiplier, which acts on some n-fold product of the noncommutative $L_p$-spaces of the group von Neumann algebra. One may also define an associated Schur multiplier, which acts on an n-fold product of Schatten classes $S_p(L_2(G))$. We generalize well-known transference results from the linear case to the multilinear case. In particular, we show that the so-called “multiplicatively bounded $(p_1,\ldots ,p_n)$-norm” of a multilinear Schur multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear Hilbert transform is not bounded as a vector-valued map $L_{p_1}(\mathbb {R}, S_{p_1}) \times L_{p_2}(\mathbb {R}, S_{p_2}) \rightarrow L_{1}(\mathbb {R}, S_{1})$, whenever $p_1$ and $p_2$ are such that $\frac {1}{p_1} + \frac {1}{p_2} = 1$. A similar result holds for certain Calderón–Zygmund-type operators. This is in contrast to the nonvector-valued Euclidean case.
We extend the Burger–Mozes theory of closed, nondiscrete, locally quasiprimitive automorphism groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of Burger–Mozes universal groups acting on the regular tree $T_{d}$ of degree $d\in \mathbb {N}_{\ge 3}$. Three applications are given. First, we characterize the automorphism types that the quasicentre of a nondiscrete subgroup of $\operatorname {\mathrm {Aut}}(T_{d})$ may feature in terms of the group’s local action. In doing so, we explicitly construct closed, nondiscrete, compactly generated subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ with nontrivial quasicentre, and see that the Burger–Mozes theory does not extend further to the transitive case. We then characterize the $(P_{k})$-closures of locally transitive subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ containing an involutive inversion, and thereby partially answer two questions by Banks et al. [‘Simple groups of automorphisms of trees determined by their actions on finite subtrees’, J. Group Theory18(2) (2015), 235–261]. Finally, we offer a new view on the Weiss conjecture.
A connected, locally finite graph $\Gamma $ is a Cayley–Abels graph for a totally disconnected, locally compact group G if G acts vertex-transitively on $\Gamma $ with compact, open vertex stabilizers. Define the minimal degree of G as the minimal degree of a Cayley–Abels graph of G. We relate the minimal degree in various ways to the modular function, the scale function and the structure of compact open subgroups. As an application, we prove that if $T_{d}$ denotes the d-regular tree, then the minimal degree of $\mathrm{Aut}(T_{d})$ is d for all $d\geq 2$.
In 2016, I solved a problem of de la Harpe from 2006: Is there a nondiscrete C$^{\ast }$-simple group? However the solution was not fully satisfactory, as the C$^{\ast }$-simple groups provided (and their operator algebras) are very close to discrete groups. All previously known examples are of this form. In this article I give yet another construction of nondiscrete C$^{\ast }$-simple groups. The statement in the title then follows. This in particular gives the first examples of nonelementary C$^{\ast }$-simple groups (in Wesolek’s sense).
For a locally compact metrisable group G, we study the action of ${\rm Aut}(G)$ on ${\rm Sub}_G$, the set of closed subgroups of G endowed with the Chabauty topology. Given an automorphism T of G, we relate the distality of the T-action on ${\rm Sub}_G$ with that of the T-action on G under a certain condition. If G is a connected Lie group, we characterise the distality of the T-action on ${\rm Sub}_G$ in terms of compactness of the closed subgroup generated by T in ${\rm Aut}(G)$ under certain conditions on the center of G or on T as follows: G has no compact central subgroup of positive dimension or T is unipotent or T is contained in the connected component of the identity in ${\rm Aut}(G)$. Moreover, we also show that a connected Lie group G acts distally on ${\rm Sub}_G$ if and only if G is either compact or it is isomorphic to a direct product of a compact group and a vector group. All the results on the Lie groups mentioned above hold for the action on ${\rm Sub}^a_G$, a subset of ${\rm Sub}_G$ consisting of closed abelian subgroups of G.
We prove that for a Banach algebra A having a bounded $\mathcal {Z}(A)$-approximate identity and for every $\mathbf {[IN]}$ group G with a weight w which is either constant on conjugacy classes or satisfies $w \geq 1$, $\mathcal {Z}(L^{1}_{w}(G) \otimes ^{\gamma } A) \cong \mathcal {Z}(L^{1}_{w}(G)) \otimes ^{\gamma } \mathcal {Z}(A)$. As an application, we discuss the conditions under which $\mathcal {Z}(L^{1}_{\omega }(G,A))$ enjoys certain Banach algebraic properties, such as weak amenability or semisimplicity.
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable $\mathrm{PU}(m,1)$-cocycles of complex hyperbolic lattices.
We give many examples of algebraic actions which are factors of Bernoulli shifts. These include certain harmonic models over left-orderable groups of large enough growth, as well as algebraic actions associated to certain lopsided elements in any left-orderable group. For many of our examples, the acting group is amenable so these actions are Bernoulli (and not just a factor of a Bernoulli), but there is no obvious Bernoulli partition.
Let G be a locally compact group and let ${\mathcal {SUB}(G)}$ be the hyperspace of closed subgroups of G endowed with the Chabauty topology. The main purpose of this paper is to characterise the connectedness of the Chabauty space ${\mathcal {SUB}(G)}$. More precisely, we show that if G is a connected pronilpotent group, then ${\mathcal {SUB}(G)}$ is connected if and only if G contains a closed subgroup topologically isomorphic to ${{\mathbb R}}$.
It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable.
For a locally compact group G, we study the distality of the action of automorphisms T of G on SubG, the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on SubG if and only if Tn is the identity map for some $n\in\mathbb N$. As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on SubG if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on SubG if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on SubG. We also show that any compactly generated distal group G is Lie projective.