To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A paper of Almeida and Trotter [‘The pseudoidentity problem and reducibility for completely regular semigroups’, Bull. Aust. Math. Soc.63 (2001), 407–433] makes essential use of free profinite semigroupoids over profinite graphs with infinitely many vertices. It has since been shown that such structures must be handled with great care. In this note, it is verified that the required properties hold for the profinite graphs considered by Almeida and Trotter, thereby filling the gaps in the proof.
We prove that if ${\it\rho}$ is an irreducible positive definite function in the Fourier–Stieltjes algebra $B(G)$ of a locally compact group $G$ with $\Vert {\it\rho}\Vert _{B(G)}=1$, then the iterated powers $({\it\rho}^{n})$ as a sequence of unital completely positive maps on the group $C^{\ast }$-algebra converge to zero in the strong operator topology.
Let $R$ be a large field of characteristic $p$. We classify the supersingular simple modules of the pro-$p$-Iwahori Hecke $R$-algebra ${\mathcal{H}}$ of a general reductive $p$-adic group $G$. We show that the functor of pro-$p$-Iwahori invariants behaves well when restricted to the representations compactly induced from an irreducible smooth $R$-representation $\unicode[STIX]{x1D70C}$ of a special parahoric subgroup $K$ of $G$. We give an almost-isomorphism between the center of ${\mathcal{H}}$ and the center of the spherical Hecke algebra ${\mathcal{H}}(G,K,\unicode[STIX]{x1D70C})$, and a Satake-type isomorphism for ${\mathcal{H}}(G,K,\unicode[STIX]{x1D70C})$. This generalizes results obtained by Ollivier for $G$ split and $K$ hyperspecial to $G$ general and $K$ special.
Let $F$ be a non-Archimedean local field, and let $G^{\sharp }$ be the group of $F$-rational points of an inner form of $\text{SL}_{n}$. We study Hecke algebras for all Bernstein components of $G^{\sharp }$, via restriction from an inner form $G$ of $\text{GL}_{n}(F)$.
For any packet of L-indistinguishable Bernstein components, we exhibit an explicit algebra whose module category is equivalent to the associated category of complex smooth $G^{\sharp }$-representations. This algebra comes from an idempotent in the full Hecke algebra of $G^{\sharp }$, and the idempotent is derived from a type for $G$. We show that the Hecke algebras for Bernstein components of $G^{\sharp }$ are similar to affine Hecke algebras of type $A$, yet in many cases are not Morita equivalent to any crossed product of an affine Hecke algebra with a finite group.
Hughes has defined a class of groups that we call finite similarity structure (FSS) groups. Each FSS group acts on a compact ultrametric space by local similarities. The best-known example is Thompson’s group V. Guided by previous work on Thompson’s group, we show that many FSS groups are of type F∞. This generalizes work of Ken Brown from the 1980s.
We introduce an elliptic version of the Grothendieck–Springer sheaf and establish elliptic analogues of the basic results of Springer theory. From a geometric perspective, our constructions specialize geometric Eisenstein series to the resolution of degree-zero, semistable $G$-bundles by degree-zero $B$-bundles over an elliptic curve $E$. From a representation theory perspective, they produce a full embedding of representations of the elliptic or double affine Weyl group into perverse sheaves with nilpotent characteristic variety on the moduli of $G$-bundles over $E$. The resulting objects are principal series examples of elliptic character sheaves, objects expected to play the role of character sheaves for loop groups.
Let ${\mathcal{K}}$ be an imaginary quadratic field. Let ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ be irreducible generic cohomological automorphic representation of $\text{GL}(n)/{\mathcal{K}}$ and $\text{GL}(n-1)/{\mathcal{K}}$, respectively. Each of them can be given two natural rational structures over number fields. One is defined by the rational structure on topological cohomology, and the other is given in terms of the Whittaker model. The ratio between these rational structures is called a Whittaker period. An argument presented by Mahnkopf and Raghuram shows that, at least if ${\rm\Pi}$ is cuspidal and the weights of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ are in a standard relative position, the critical values of the Rankin–Selberg product $L(s,{\rm\Pi}\times {\rm\Pi}^{\prime })$ are essentially algebraic multiples of the product of the Whittaker periods of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$. We show that, under certain regularity and polarization hypotheses, the Whittaker period of a cuspidal ${\rm\Pi}$ can be given a motivic interpretation, and can also be related to a critical value of the adjoint $L$-function of related automorphic representations of unitary groups. The resulting expressions for critical values of the Rankin–Selberg and adjoint $L$-functions are compatible with Deligne’s conjecture.
Under endoscopic assumptions about $L$-packets of unitary groups, we prove the local Gan–Gross–Prasad conjecture for tempered representations of unitary groups over $p$-adic fields. Roughly, this conjecture says that branching laws for $U(n-1)\subset U(n)$ can be computed using epsilon factors.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
A finitely generated subgroup ${\rm\Gamma}$ of a real Lie group $G$ is said to be Diophantine if there is ${\it\beta}>0$ such that non-trivial elements in the word ball $B_{{\rm\Gamma}}(n)$ centered at $1\in {\rm\Gamma}$ never approach the identity of $G$ closer than $|B_{{\rm\Gamma}}(n)|^{-{\it\beta}}$. A Lie group $G$ is said to be Diophantine if for every $k\geqslant 1$ a random $k$-tuple in $G$ generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most $5$, or derived length at most $2$, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non-Diophantine nilpotent and solvable (non-nilpotent) Lie groups.
Let G be a finitely generated group with polynomial growth, and let ω be a weight, i.e. a sub-multiplicative function on G with positive values. We study when the weighted group algebra ℓ1 (G, ω) is isomorphic to an operator algebra. We show that ℓ1 (G, ω) is isomorphic to an operator algebra if ω is a polynomial weight with large enough degree or an exponential weight of order 0 < α < 1. We demonstrate that the order of growth of G plays an important role in this problem. Moreover, the algebraic centre of ℓ1 (G, ω) is isomorphic to a Q-algebra, and hence satisfies a multi-variable von Neumann inequality. We also present a more detailed study of our results when G consists of the d-dimensional integers ℤd or the three-dimensional discrete Heisenberg group ℍ3(ℤ). The case of the free group with two generators is considered as a counter-example of groups with exponential growth.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.
In this paper, we first deduce a formula of S-curvature of homogeneous Finsler spaces in terms of Killing vector fields. Then we prove that a homogeneous Finsler space has isotropic S-curvature if and only if it has vanishing S-curvature. In the special case that the homogeneous Finsler space is a Randers space, we give an explicit formula which coincides with the previous formula obtained by the second author using other methods.
Meta-centralizers of non-locally compact group algebras are studied. Theorems about their representations with the help of families of generalized measures are proved. Isomorphisms of group algebras are investigated in relation with meta-centralizers.
Suppose that $G$ is a connected reductive algebraic group defined over $\mathbf{R}$, $G(\mathbf{R})$ is its group of real points, ${\it\theta}$ is an automorphism of $G$, and ${\it\omega}$ is a quasicharacter of $G(\mathbf{R})$. Kottwitz and Shelstad defined endoscopic data associated to $(G,{\it\theta},{\it\omega})$, and conjectured a matching of orbital integrals between functions on $G(\mathbf{R})$ and its endoscopic groups. This matching has been proved by Shelstad, and it yields a dual map on stable distributions. We express the values of this dual map on stable tempered characters as a linear combination of twisted characters, under some additional hypotheses on $G$ and ${\it\theta}$.
An algebra A is said to be directly finite if each left-invertible element in the (conditional) unitization of A is right invertible. We show that the reduced group C*-algebra of a unimodular group is directly finite, extending known results for the discrete case. We also investigate the corresponding problem for algebras of p-pseudofunctions, showing that these algebras are directly finite if G is amenable and unimodular, or unimodular with the Kunze–Stein property. An exposition is also given of how existing results from the literature imply that L1(G) is not directly finite when G is the affine group of either the real or complex line.
We show the existence of a large family of representations supported by the orbit closure of the determinant. However, the validity of our result is based on the validity of the celebrated ‘Latin square conjecture’ due to Alon and Tarsi or, more precisely, on the validity of an equivalent ‘column Latin square conjecture’ due to Huang and Rota.
Let $(G,G^{\prime })$ be a type I irreducible reductive dual pair in Sp$(W_{\mathbb{R}})$. We assume that $(G,G^{\prime })$ is in the stable range where $G$ is the smaller member. Let $K$ and $K^{\prime }$ be maximal compact subgroups of $G$ and $G^{\prime }$ respectively. Let $\mathfrak{g}=\mathfrak{k}\bigoplus \mathfrak{p}$ and $\mathfrak{g}^{\prime }=\mathfrak{k}^{\prime }\bigoplus \mathfrak{p}^{\prime }$ be the complexified Cartan decompositions of the Lie algebras of $G$ and $G^{\prime }$ respectively. Let $\widetilde{K}$ and $\widetilde{K}^{\prime }$ be the inverse images of $K$ and $K^{\prime }$ in the metaplectic double cover $\widetilde{\text{Sp}}(W_{\mathbb{R}})$ of Sp$(W_{\mathbb{R}})$. Let ${\it\rho}$ be a genuine irreducible $(\mathfrak{g},\widetilde{K})$-module. Our first main result is that if ${\it\rho}$ is unitarizable, then except for one special case, the full local theta lift ${\it\rho}^{\prime }={\rm\Theta}({\it\rho})$ is equal to the local theta lift ${\it\theta}({\it\rho})$. Thus excluding the special case, the full theta lift ${\it\rho}^{\prime }$ is an irreducible and unitarizable $(\mathfrak{g}^{\prime },\widetilde{K}^{\prime })$-module. Our second main result is that the associated variety and the associated cycle of ${\it\rho}^{\prime }$ are the theta lifts of the associated variety and the associated cycle of the contragredient representation ${\it\rho}^{\ast }$ respectively. Finally we obtain some interesting $(\mathfrak{g},\widetilde{K})$-modules whose $\widetilde{K}$-spectrums are isomorphic to the spaces of global sections of some vector bundles on some nilpotent $K_{\mathbb{C}}$-orbits in $\mathfrak{p}^{\ast }$.
The author has previously associated to each commutative ring with unit $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\Bbbk $ and étale groupoid $\mathscr{G}$ with locally compact, Hausdorff, totally disconnected unit space a $\Bbbk $-algebra $\Bbbk \, \mathscr{G}$. The algebra $\Bbbk \, \mathscr{G}$ need not be unital, but it always has local units. The class of groupoid algebras includes group algebras, inverse semigroup algebras and Leavitt path algebras. In this paper we show that the category of unitary$\Bbbk \, \mathscr{G}$-modules is equivalent to the category of sheaves of $\Bbbk $-modules over $\mathscr{G}$. As a consequence, we obtain a new proof of a recent result that Morita equivalent groupoids have Morita equivalent algebras.
The Chevalley involution of a connected, reductive algebraic group over an algebraically closed field takes every semisimple element to a conjugate of its inverse, and this involution is unique up to conjugacy. In the case of the reals we prove the existence of a real Chevalley involution, which is defined over $\mathbb{R}$, takes every semisimple element of $G(\mathbb{R})$ to a $G(\mathbb{R})$-conjugate of its inverse, and is unique up to conjugacy by $G(\mathbb{R})$. We derive some consequences, including an analysis of groups for which every irreducible representation is self-dual, and a calculation of the Frobenius Schur indicator for such groups.