To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a new construction of the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ via the patching method of Taylor–Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the $p$-adic Langlands program; in particular, it gives a new proof of many cases of the second author’s local–global compatibility theorem and relaxes a hypothesis on the local mod $p$ representation in that theorem.
We prove a bound relating the volume of a curve near a cusp in a complex ball quotient $X=\mathbb{B}/\unicode[STIX]{x1D6E4}$ to its multiplicity at the cusp. There are a number of consequences: we show that for an $n$-dimensional toroidal compactification $\overline{X}$ with boundary $D$, $K_{\overline{X}}+(1-\unicode[STIX]{x1D706})D$ is ample for $\unicode[STIX]{x1D706}\in (0,(n+1)/2\unicode[STIX]{x1D70B})$, and in particular that $K_{\overline{X}}$ is ample for $n\geqslant 6$. By an independent algebraic argument, we prove that every ball quotient of dimension $n\geqslant 4$ is of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in dimension 2 does not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green–Griffiths conjecture.
For the groups $\operatorname{SO}(2n+1,F)$, where $F$ is a $p$-adic field, we consider the tempered irreducible representations of unipotent reduction. Lusztig has constructed and parametrized these representations. We prove that they satisfy the expected endoscopic identities which determine the parametrization.
Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\overline{\mathbb{F}}_{p})$ is a continuous irreducible Galois representation such that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ is upper-triangular, maximally non-split, and generic. If $\overline{r}$ is automorphic, and some suitable technical conditions hold, we show that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ can be recovered from the $\text{GL}_{3}(F_{w})$-action on a space of mod $p$ automorphic forms on a compact unitary group. On the way we prove results about weights in Serre’s conjecture for $\overline{r}$, show the existence of an ordinary lifting of $\overline{r}$, and prove the freeness of certain Taylor–Wiles patched modules in this context. We also show the existence of many Galois representations $\overline{r}$ to which our main theorem applies.
Harish-Chandra induction and restriction functors play a key role in the representation theory of reductive groups over finite fields. In this paper, extending earlier work of Dat, we introduce and study generalisations of these functors which apply to a wide range of finite and profinite groups, typical examples being compact open subgroups of reductive groups over non-archimedean local fields. We prove that these generalisations are compatible with two of the tools commonly used to study the (smooth, complex) representations of such groups, namely Clifford theory and the orbit method. As a test case, we examine in detail the induction and restriction of representations from and to the Siegel Levi subgroup of the symplectic group $\text{Sp}_{4}$ over a finite local principal ideal ring of length two. We obtain in this case a Mackey-type formula for the composition of these induction and restriction functors which is a perfect analogue of the well-known formula for the composition of Harish-Chandra functors. In a different direction, we study representations of the Iwahori subgroup $I_{n}$ of $\text{GL}_{n}(F)$, where $F$ is a non-archimedean local field. We establish a bijection between the set of irreducible representations of $I_{n}$ and tuples of primitive irreducible representations of smaller Iwahori subgroups, where primitivity is defined by the vanishing of suitable restriction functors.
In this paper, we consider how to express an Iwahori–Whittaker function through Demazure characters. Under some interesting combinatorial conditions, we obtain an explicit formula and thereby a generalization of the Casselman–Shalika formula. Under the same conditions, we compute the transition matrix between two natural bases for the space of Iwahori fixed vectors of an induced representation of a $p$-adic group; this corrects a result of Bump–Nakasuji.
We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?
We show that Cannon–Thurston maps exist for degenerate free groups without parabolics, that is, for handlebody groups. Combining these techniques with earlier work proving the existence of Cannon–Thurston maps for surface groups, we show that Cannon–Thurston maps exist for arbitrary finitely generated Kleinian groups without parabolics, proving conjectures of Thurston and McMullen. We also show that point pre-images under Cannon–Thurston maps for degenerate free groups without parabolics correspond to endpoints of leaves of an ending lamination in the Masur domain, whenever a point has more than one pre-image. This proves a conjecture of Otal. We also prove a similar result for point pre-images under Cannon–Thurston maps for arbitrary finitely generated Kleinian groups without parabolics.
Let $G$ be a totally disconnected, locally compact group. A closed subgroup of $G$ is locally normal if its normalizer is open in $G$. We begin an investigation of the structure of the family of closed locally normal subgroups of $G$. Modulo commensurability, this family forms a modular lattice ${\mathcal{L}}{\mathcal{N}}(G)$, called the structure lattice of $G$. We show that $G$ admits a canonical maximal quotient $H$ for which the quasicentre and the abelian locally normal subgroups are trivial. In this situation ${\mathcal{L}}{\mathcal{N}}(H)$ has a canonical subset called the centralizer lattice, forming a Boolean algebra whose elements correspond to centralizers of locally normal subgroups. If $H$ is second-countable and acts faithfully on its centralizer lattice, we show that the topology of $H$ is determined by its algebraic structure (and thus invariant by every abstract group automorphism), and also that the action on the Stone space of the centralizer lattice is universal for a class of actions on profinite spaces. Most of the material is developed in the more general framework of Hecke pairs.
We give a Rankin–Selberg integral representation for the Spin (degree eight) $L$-function on $\operatorname{PGSp}_{6}$ that applies to the cuspidal automorphic representations associated to Siegel modular forms. If $\unicode[STIX]{x1D70B}$ corresponds to a level-one Siegel modular form $f$ of even weight, and if $f$ has a nonvanishing maximal Fourier coefficient (defined below), then we deduce the functional equation and finiteness of poles of the completed Spin $L$-function $\unicode[STIX]{x1D6EC}(\unicode[STIX]{x1D70B},\text{Spin},s)$ of $\unicode[STIX]{x1D70B}$.
Given a compact Lie group $G$, in this paper we establish $L^{p}$-bounds for pseudo-differential operators in $L^{p}(G)$. The criteria here are given in terms of the concept of matrix symbols defined on the noncommutative analogue of the phase space $G\times \widehat{G}$, where $\widehat{G}$ is the unitary dual of $G$. We obtain two different types of $L^{p}$ bounds: first for finite regularity symbols and second for smooth symbols. The conditions for smooth symbols are formulated using $\mathscr{S}_{\unicode[STIX]{x1D70C},\unicode[STIX]{x1D6FF}}^{m}(G)$ classes which are a suitable extension of the well-known $(\unicode[STIX]{x1D70C},\unicode[STIX]{x1D6FF})$ ones on the Euclidean space. The results herein extend classical $L^{p}$ bounds established by C. Fefferman on $\mathbb{R}^{n}$. While Fefferman’s results have immediate consequences on general manifolds for $\unicode[STIX]{x1D70C}>\max \{\unicode[STIX]{x1D6FF},1-\unicode[STIX]{x1D6FF}\}$, our results do not require the condition $\unicode[STIX]{x1D70C}>1-\unicode[STIX]{x1D6FF}$. Moreover, one of our results also does not require $\unicode[STIX]{x1D70C}>\unicode[STIX]{x1D6FF}$. Examples are given for the case of $\text{SU}(2)\cong \mathbb{S}^{3}$ and vector fields/sub-Laplacian operators when operators in the classes $\mathscr{S}_{0,0}^{m}$ and $\mathscr{S}_{\frac{1}{2},0}^{m}$ naturally appear, and where conditions $\unicode[STIX]{x1D70C}>\unicode[STIX]{x1D6FF}$ and $\unicode[STIX]{x1D70C}>1-\unicode[STIX]{x1D6FF}$ fail, respectively.
Let $G$ be a semi-simple algebraic group over an algebraically closed field $k$, whose characteristic is positive and does not divide the order of the Weyl group of $G$, and let $\breve{G}$ be its Langlands dual group over $k$. Let $C$ be a smooth projective curve over $k$ of genus at least two. Denote by $\operatorname{Bun}_{G}$ the moduli stack of $G$-bundles on $C$ and $\operatorname{LocSys}_{\breve{G}}$ the moduli stack of $\breve{G}$-local systems on $C$. Let $D_{\operatorname{Bun}_{G}}$ be the sheaf of crystalline differential operators on $\operatorname{Bun}_{G}$. In this paper we construct an equivalence between the bounded derived category $D^{b}(\operatorname{QCoh}(\operatorname{LocSys}_{\breve{G}}^{0}))$ of quasi-coherent sheaves on some open subset $\operatorname{LocSys}_{\breve{G}}^{0}\subset \operatorname{LocSys}_{\breve{G}}$ and bounded derived category $D^{b}(D_{\operatorname{Bun}_{G}}^{0}\text{-}\text{mod})$ of modules over some localization $D_{\operatorname{Bun}_{G}}^{0}$ of $D_{\operatorname{Bun}_{G}}$. This generalizes the work of Bezrukavnikov and Braverman in the $\operatorname{GL}_{n}$ case.
We study generalized and degenerate Whittaker models for reductive groups over local fields of characteristic zero (archimedean or non-archimedean). Our main result is the construction of epimorphisms from the generalized Whittaker model corresponding to a nilpotent orbit to any degenerate Whittaker model corresponding to the same orbit, and to certain degenerate Whittaker models corresponding to bigger orbits. We also give choice-free definitions of generalized and degenerate Whittaker models. Finally, we explain how our methods imply analogous results for Whittaker–Fourier coefficients of automorphic representations. For $\text{GL}_{n}(\mathbb{F})$ this implies that a smooth admissible representation $\unicode[STIX]{x1D70B}$ has a generalized Whittaker model ${\mathcal{W}}_{{\mathcal{O}}}(\unicode[STIX]{x1D70B})$ corresponding to a nilpotent coadjoint orbit ${\mathcal{O}}$ if and only if ${\mathcal{O}}$ lies in the (closure of) the wave-front set $\operatorname{WF}(\unicode[STIX]{x1D70B})$. Previously this was only known to hold for $\mathbb{F}$ non-archimedean and ${\mathcal{O}}$ maximal in $\operatorname{WF}(\unicode[STIX]{x1D70B})$, see Moeglin and Waldspurger [Modeles de Whittaker degeneres pour des groupes p-adiques, Math. Z. 196 (1987), 427–452]. We also express ${\mathcal{W}}_{{\mathcal{O}}}(\unicode[STIX]{x1D70B})$ as an iteration of a version of the Bernstein–Zelevinsky derivatives [Bernstein and Zelevinsky, Induced representations of reductive p-adic groups. I., Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441–472; Aizenbud et al., Derivatives for representations of$\text{GL}(n,\mathbb{R})$and$\text{GL}(n,\mathbb{C})$, Israel J. Math. 206 (2015), 1–38]. This enables us to extend to $\text{GL}_{n}(\mathbb{R})$ and $\text{GL}_{n}(\mathbb{C})$ several further results by Moeglin and Waldspurger on the dimension of ${\mathcal{W}}_{{\mathcal{O}}}(\unicode[STIX]{x1D70B})$ and on the exactness of the generalized Whittaker functor.
Let $k$ be a finite extension of $\mathbb{Q}_{p}$, let ${\mathcal{G}}$ be an absolutely simple split reductive group over $k$, and let $K$ be a maximal unramified extension of $k$. To each point in the Bruhat–Tits building of ${\mathcal{G}}_{K}$, Moy and Prasad have attached a filtration of ${\mathcal{G}}(K)$ by bounded subgroups. In this paper we give necessary and sufficient conditions for the dual of the first Moy–Prasad filtration quotient to contain stable vectors for the action of the reductive quotient. Our work extends earlier results by Reeder and Yu, who gave a classification in the case when $p$ is sufficiently large. By passing to a finite unramified extension of $k$ if necessary, we obtain new supercuspidal representations of ${\mathcal{G}}(k)$.
In this paper we study certain sheaves of $p$-adically complete rings of differential operators on semistable models of the projective line over the ring of integers in a finite extension $L$ of $\mathbb{Q}_{p}$. The global sections of these sheaves can be identified with (central reductions of) analytic distribution algebras of wide open congruence subgroups. It is shown that the global sections functor furnishes an equivalence between the categories of coherent module sheaves and finitely presented modules over the distribution algebras. Using the work of M. Emerton, we then describe admissible representations of $\text{GL}_{2}(L)$ in terms of sheaves on the projective limit of these formal schemes. As an application, we show that representations coming from certain equivariant line bundles on Drinfeld’s first étale covering of the $p$-adic upper half plane are admissible.
We correct the proof of the main result of the paper, Theorem 5.7. Our corrected proof relies on weaker versions of a number of intermediate results from the paper. The original, more general, versions of these statements are not known to be true.
In this article, for nilpotent orbits of ramified quasi-split unitary groups with two Jordan blocks, we give closed formulas for their Shalika germs at certain equi-valued elements with half-integral depth previously studied by Hales. Associated with these elements are hyperelliptic curves defined over the residue field, and the numbers we obtain can be expressed in terms of Frobenius eigenvalues on the first $\ell$-adic cohomology of the curves, generalizing previous result of Hales on stable subregular Shalika germs. These Shalika germ formulas imply new results on stability and endoscopic transfer of nilpotent orbital integrals of ramified unitary groups. We also describe how the same numbers appear in the local character expansions of specific supercuspidal representations and consequently dimensions of degenerate Whittaker models.
Let $\widetilde{\text{Sp}}(2n)$ be the metaplectic covering of $\text{Sp}(2n)$ over a local field of characteristic zero. The core of the theory of endoscopy for $\widetilde{\text{Sp}}(2n)$ is the geometric transfer of orbital integrals to its elliptic endoscopic groups. The dual of this map, called the spectral transfer, is expected to yield endoscopic character relations which should reveal the internal structure of $L$-packets. As a first step, we characterize the image of the collective geometric transfer in the non-archimedean case, then reduce the spectral transfer to the case of cuspidal test functions by using a simple stable trace formula. In the archimedean case, we establish the character relations and determine the spectral transfer factors by rephrasing the works by Adams and Renard.
An important result of Arkhipov–Bezrukavnikov–Ginzburg relates constructible sheaves on the affine Grassmannian to coherent sheaves on the dual Springer resolution. In this paper, we prove a positive-characteristic analogue of this statement, using the framework of ‘mixed modular sheaves’ recently developed by the first author and Riche. As an application, we deduce a relationship between parity sheaves on the affine Grassmannian and Bezrukavnikov’s ‘exotic t-structure’ on the Springer resolution.