To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A problem in representation theory of $p$-adic groups is the computation of the Casselman basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to the intertwining integrals. We shall express the transition matrix $(m_{u,v})$ of the Casselman basis to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–Lusztig R-polynomials. As an application we will obtain certain new functional equations for these transition matrices under the algebraic involution sending the residue cardinality $q$ to $q^{-1}$. We will also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix $(m_{u,v})$ to its inverse.
We investigate continuous transitive actions of semitopological groups on spaces, as well as separately continuous transitive actions of topological groups.
In this paper, we study the warped structures of Finsler metrics. We obtain the differential equation that characterizes Finsler warped product metrics with vanishing Douglas curvature. By solving this equation, we obtain all Finsler warped product Douglas metrics. Some new Douglas Finsler metrics of this type are produced by using known spherically symmetric Douglas metrics.
We consider the following question: for which metrizable separable spaces $X$ does the free abelian topological group $A(X\oplus X)$ isomorphically embed into $A(X)$. While for many natural spaces $X$ such an embedding exists, our main result shows that if $X$ is a Cook continuum or $X$ is a rigid Bernstein set, then $A(X\oplus X)$ does not embed into $A(X)$ as a topological subgroup. The analogous statement is true for the free boolean group $B(X)$.
We consider point distributions in compact connected two-point homogeneous spaces (Riemannian symmetric spaces of rank one). All such spaces are known: they are the spheres in the Euclidean spaces, the real, complex and quaternionic projective spaces and the octonionic projective plane. For all such spaces the best possible bounds for the quadratic discrepancies and sums of pairwise distances are obtained in the paper (Theorems 2.1 and 2.2). Distributions of points of $t$-designs on such spaces are also considered (Theorem 2.3). In particular, it is shown that the optimal $t$-designs meet the best possible bounds for quadratic discrepancies and sums of pairwise distances (Corollary 2.1). Our approach is based on the Fourier analysis on two-point homogeneous spaces and explicit spherical function expansions for discrepancies and sums of distances (Theorems 4.1 and 4.2).
In the realm of Delone sets in locally compact, second countable Hausdorff groups, we develop a dynamical systems approach in order to study the continuity behavior of measured quantities arising from point sets. A special focus is both on the autocorrelation, as well as on the density of states for random bounded operators. It is shown that for uniquely ergodic limit systems, the latter measures behave continuously with respect to the Chabauty–Fell convergence of hulls. In the special situation of Euclidean spaces, our results complement recent developments in describing spectra as topological limits: we show that the measured quantities under consideration can be approximated via periodic analogs.
We consider generalised metrisability and cardinal invariants in quasitopological groups. We construct examples to show that some equalities of cardinal invariants in topological groups cannot be extended to quasitopological groups.
We combine the ideas of a Harish-Chandra–Howe local character expansion, which can be centred at an arbitrary semisimple element, and a Kim–Murnaghan asymptotic expansion, which so far has been considered only around the identity. We show that, for most smooth, irreducible representations (those containing a good, minimal K-type), Kim–Murnaghan-type asymptotic expansions are valid on explicitly defined neighbourhoods of nearly arbitrary semisimple elements. We then give an explicit, inductive recipe for computing the coefficients in an asymptotic expansion for a tame supercuspidal representation. The only additional information needed in the inductive step is a fourth root of unity, which we expect to be useful in proving stability and endoscopic-transfer identities.
Let $X$ be a solenoid, i.e. a compact, finite-dimensional, connected abelian group with normalized Haar measure $\unicode[STIX]{x1D707}$, and let $\unicode[STIX]{x1D6E4}\rightarrow \operatorname{Aff}(X)$ be an action of a countable discrete group $\unicode[STIX]{x1D6E4}$ by continuous affine transformations of $X$. We show that the probability measure preserving action $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ does not have the spectral gap property if and only if there exists a $p_{\text{a}}(\unicode[STIX]{x1D6E4})$-invariant proper subsolenoid $Y$ of $X$ such that the image of $\unicode[STIX]{x1D6E4}$ in $\operatorname{Aff}(X/Y)$ is a virtually solvable group, where $p_{\text{a}}:\operatorname{Aff}(X)\rightarrow \operatorname{Aut}(X)$ is the canonical projection. When $\unicode[STIX]{x1D6E4}$ is finitely generated or when $X$ is the $a$-adic solenoid for an integer $a\geq 1$, the subsolenoid $Y$ can be chosen so that the image $\unicode[STIX]{x1D6E4}$ in $\operatorname{Aff}(X/Y)$ is a virtually abelian group. In particular, an action $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ by affine transformations on a solenoid $X$ has the spectral gap property if and only if $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ is strongly ergodic.
If $G\ncong \operatorname{Alt}(\mathbb{N})$ is an inductive limit of finite alternating groups, then the indecomposable characters of $G$ are precisely the associated characters of the ergodic invariant random subgroups of $G$.
We prove an inverse theorem for the Gowers $U^{2}$-norm for maps $G\rightarrow {\mathcal{M}}$ from a countable, discrete, amenable group $G$ into a von Neumann algebra ${\mathcal{M}}$ equipped with an ultraweakly lower semi-continuous, unitarily invariant (semi-)norm $\Vert \cdot \Vert$. We use this result to prove a stability result for unitary-valued $\unicode[STIX]{x1D700}$-representations $G\rightarrow {\mathcal{U}}({\mathcal{M}})$ with respect to $\Vert \cdot \Vert$.
Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.
Hardy’s uncertainty principle for the Gabor transform is proved for locally compact abelian groups having noncompact identity component and groups of the form $\mathbb{R}^{n}\times K$, where $K$ is a compact group having irreducible representations of bounded dimension. We also show that Hardy’s theorem fails for a connected nilpotent Lie group $G$ which admits a square integrable irreducible representation. Further, a similar conclusion is made for groups of the form $G\times D$, where $D$ is a discrete group.
For a closed subgroup of a locally compact group the Rieffel induction process gives rise to a C*-correspondence over the C*-algebra of the subgroup. We study the associated Cuntz–Pimsner algebra and show that, by varying the subgroup to be open, compact, or discrete, there are connections with the Exel–Pardo correspondence arising from a cocycle, and also with graph algebras.
Let $T$ be a locally finite tree without vertices of degree $1$. We show that among the closed subgroups of $\text{Aut}(T)$ acting with a bounded number of orbits, the Chabauty-closure of the set of topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover, if all vertices of $T$ have degree ${\geqslant}3$, then the set of isomorphism classes of topologically simple closed subgroups of $\text{Aut}(T)$ acting doubly transitively on $\unicode[STIX]{x2202}T$ carries a natural compact Hausdorff topology inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are also presented.
In this article we give a geometric construction of a tilting perverse sheaf on Drinfeld’s compactification, by applying the nearby cycles functor to a family of nondegenerate Whittaker sheaves. Its restrictions along the defect stratification are shown to be certain perverse sheaves attached to the nilpotent radical of the Langlands dual Lie algebra. We also describe the subquotients of the monodromy filtration using the Picard–Lefschetz oscillators introduced by Schieder. We give an argument that the subquotients are semisimple based on the action, constructed by Feigin, Finkelberg, Kuznetsov, and Mirković, of the Langlands dual Lie algebra on the global intersection cohomology of quasimaps into flag varieties.
Let $G$ be an orthogonal, symplectic or unitary group over a non-archimedean local field of odd residual characteristic. This paper concerns the study of the “wild part” of an irreducible smooth representation of $G$, encoded in its “semisimple character”. We prove two fundamental results concerning them, which are crucial steps toward a complete classification of the cuspidal representations of $G$. First we introduce a geometric combinatorial condition under which we prove an “intertwining implies conjugacy” theorem for semisimple characters, both in $G$ and in the ambient general linear group. Second, we prove a Skolem–Noether theorem for the action of $G$ on its Lie algebra; more precisely, two semisimple elements of the Lie algebra of $G$ which have the same characteristic polynomial must be conjugate under an element of $G$ if there are corresponding semisimple strata which are intertwined by an element of $G$.
Let $G$ be a $p$-adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$, the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$, into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.
We prove an explicit formula for the arithmetic intersection number of diagonal cycles on GSpin Rapoport–Zink spaces in the minuscule case. This is a local problem arising from the arithmetic Gan–Gross–Prasad conjecture for orthogonal Shimura varieties. Our formula can be viewed as an orthogonal counterpart of the arithmetic–geometric side of the arithmetic fundamental lemma proved by Rapoport–Terstiege–Zhang in the minuscule case.
We extend Følner’s amenability criterion to the realm of general topological groups. Building on this, we show that a topological group $G$ is amenable if and only if its left-translation action can be approximated in a uniform manner by amenable actions on the set $G$. As applications we obtain a topological version of Whyte’s geometric solution to the von Neumann problem and give an affirmative answer to a question posed by Rosendal.