To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let σ be an ergodic endomorphism of the r–dimensional torus and Π a semigroup generated by two affine transformations lying above σ. We show that the flow defined by Π admits minimal sets of positive Hausdorff dimension and we give necessary and sufficient conditions for this flow to be minimal.
When G is a topological group, the set N(G) of continuous self-maps of G, and the subset N0(G) of those which fix the identity of G, are near-rings. In this paper we examine the (left) ideal structure of these near-rings when G is finite. N0(G) is shown to have exactly two maximal ideals, whose intersection is the radical. In the final section we investigate subnear-rings of N0(G) determined by certain continuous elements of the endomorphism near-ring.
Let G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.
The topology of the Čech fundamental group of the one-point compactification of an appropriate space Y induces a topology on the fundamental group of Y. We describe this topology in terms of a topological group introduced by Higman.
For a locally compact group G, the von Neumann kernel, n(G), is the intersection of the kernels of the finite dimensional (continuous) unitary representations of G. In this paper we calculate n(G) explicitly for a general connected locally compact group and for certain classes of non-connected groups.
Let G denote any locally compact abelian group with the dual group Γ. We construct a new kind of subalgebra L1(G) ⊗ΓS of L1(G) from given Banach ideal S of L1(G). We show that L1(G) ⊗гS is the larger amoung all strongly character invariant homogeneous Banach algebras in S. when S contains a strongly character invariant Segal algebra on G, it is show that L1(G) ⊗гS is also the largest among all strongly character invariant Segal algebras in S. We give applications to characterizations of two kinds of subalgebras of L1(G)-strongly character invariant Segal algebras on G and Banach ideal in L1(G) which contain a strongly character invariant Segal algebra on G.
In this paper we study commutative topological semigroups S admitting an absolutely continuous measure. When S is cancellative we show that S admits a weaker topology J with respect to which (S, J) is embeddable as a subsemigroup with non-empty interior in some locally compact topological group. As a consequence, we deduce certain results related to the existence of invariant measures on S and for a large class of locally compact topological semigroups S, we associate S with some useful topological subsemigroup of a locally compact group.
We determine necessary and sufficient conditions for the multiplier representations of a discrete group to be type I. This result extends the corresponding result for ordinary representation given by Kaniuth in [4].
N(G) denotes the near-ring of all continuous selfmaps of the topological group G (under composition and the pointwise induced operation) and N0(G) is the subnear-ring of N(G) consisting of all functions having the identity element of G fixed. It is known that if G is discrete then (a) N0(G) is simple and (b) N(G) is simple if and only if G is not of order 2. We begin a study of the ideal structure of these near-rings when G is a disconnected group.
If G is a topological group then we can think of G acting on itself by multiplying on the left. We would like to know when this action has the property that whenever g and h are distinct elements of G, then the element xg does not get arbitrarily close to xh as x varies in G. It is natural to say that this is the case if {(xg, xh): x∈G} is separated from the diagonal of G × G by a uniform neighbourhood of the diagonal.
A semigroup over a generalized tree, denoted by the term ℳL-semigroup, is a compact semigroup S such that Green's relation H is a congruence on S and S/H is an abelian generalized tree with idempotent endpoints and E(S/H) a Lawson semilattice. Each such semigroup is characterized as being constructible from cylindrical subsemigroups of S and the generalized tree S/H in a manner similar to the construction of semigroups over trees and of the hormos. Indeed, semigroups over trees are shown to be particular examples of the construction given herein.
Let ℝ∞ be the direct limit of the Euclidean spaces ℝn. Now the orthogonal group O(∞) acts on ℝn and the direct limit O(∞) of the groups O(∞) acts on ℝ∞. The infinite pin group Pin(∞) is an extension of ℤ2 by O(∞) and admits the following presentation: the generators are the unit vectors xf in ℝ∞ and the relations are
Let G and H be Hausdorff locally compact groups. By R(G, H) we denote the space of continuous homomorphisms of G into H equipped with the compact-open topology, namely that which is generated by subsets of the form
where K is any compact subset of G and U is any open subset of H. Further, let R0(G, H) be the subset of R(G, H) consisting of elements r satisfying the conditions that the quotient space H/r(G) is compact and r is proper, i.e., the action of G on H defined as the action by left translations of r(G) on H is proper. It has been shown by H. Abels [2] that if G and H are such that at least one of them has a compact defining subset then R0(G,H) is open in R(G,H). Moreover, for each r0 ∈ R0(G,H) there exists a neighbourhood M and a compact subset F of H such that r(G) F = H for all r ∈ M and for each compact subset K of H the union is a relatively compact subset of G. It is furthermore shown in [1] that if G contains no small subgroups and H is connected then the subset of R0(G, H) consisting of isomorphisms of G into H is open in R(G, H). These results, in the case in which H is a connected Lie Group and G is a discrete group, have been established by Weil in [5] and [6] appendix 1.
Every n-dimensional manifold admits an embedding in R2n by the result of H. Whitney [11]. Lie groups are parallelizable and so by the theorem of M. W. Hirsch [5] there is an immersion of any Lie group in codimension one. However no general theorem is known which asserts that a parallelizable manifold embeds in Euclidean space of dimension less than 2n. Here we give a method for constructing smooth embeddings of compact Lie groups in Euclidean space. The construction is a fairly direct one using the geometry of the Lie group, and works very well in some cases. It does not give reasonable results for the group Spin (n) except for low values of n. We also give a method for constructing some embeddings of Spin (n), this uses the embedding of SO(n) that was constructed by the general method and an embedding theorem of A. Haefliger [3]. Although this is a very ad hoc method, it has some interest as it seems to be the first application of Haefliger's theorem which gives embedding results appreciably below twice the dimension of the manifold. The motivation for this work was to throw some light on the problem of the existence of low codimensional embeddings of parallelizable manifolds.