To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish a duality between distributive bisemilattices and certain compact left normal bands. The main technique in the proof utilizes the idea of Plonka sums.
W. Rudin has proved that the union of the Riesz set N ⊆ R with a Λ(l)-subset of Z is again a Riesz set. In this note we generalize his result to compact groups whose contains a circle group, thereby extending an earlier F. and M. Riesz theorem for such groups by the author. We also investigate the possibility of constructing Λ(p)-sets for these groups, departing from Λ(p)-sets for the circle group in center.
Introduction. Polyhedra in 3-dimensional hyperbolic space which give rise to discrete groups generated by reflections in their faces have been investigated in [14], [17], [29] and in the case of tetrahedra there are precisely nine compact non-congruent ones with dihedral angles integral submultiples of π [14]. These polyhedral groups give rise to hyperbolic 3-orbifolds and examples of these have been studied, for example, in [3], [15], [18], [24], [25].
We analyse the structure of a regular extension ℳ ⋊ γ, υQ of a von Neumann algebra ℳ by an action (modulo inner automorphisms) γ of a discrete group Q, and a nonabelian 2-cycle υ for γ, under the assumption that the “action” γ of Q is cocycle conjugate to an “action”, α which leaves globally invariant a cartan subalgebra of ℳ. we show that ℳ ⋊ γ, υQ is isomorphic with the algebra of the left regular projective representation of a certain discrete, non-principal groupoid ℜ V Q determined by the action of Q on the given cartan subalgebrs, where ℜ is the Takesaki relation associated to the pair (ℳ, ) we apply this description to give a decomposition of the regular representation of a group G into irreducibles, where G is a split extension of a type I group K by an abelian group Q, and work out the details of the author's earlier abstract plancherel theorem in the case when K is abelian.
Let G be a locally compact group, and let D(G) be a dense subalgebra of the convolution algebra L1(G). Suppose that π is a unitary representation of G and that, for each u in D(G), π(u)) is a trace-class operator. Then the linear functional u → tr(π(u)) (the trace of π(u)) is called the D-character of π. We give a simple proof that the D-character of such a representation determines the representation up to unitary equivalence. As an application, we give an easy proof of the result of Harish-Chandra that the K-finite characters of unitary representations of semisimple Lie groups determine the representations.
Recently M. Benedicks showed that if a function f ∈ L2(Rd) and its Fourier transform both have supports of finite measure, then f = 0 almot everywhere. In this paper we give a version of this result for all noncompact semisimple connected Lie groups with finite centres.
Let N be a nilpotent simply connected Lie group, and A a commutative connected d-dimensional Lie group of automorphisms of N which correspond to semisimple endomorphisms of the Lie algebra of N with positive eigenvalues. Form the split extension S = N × A ≅ N × a, a being the Lie algebra of A. We consider a family of “rectangles” Br in S, parameterized by r > 0, such that the measure of Br behaves asymptotically as a fixed power of r. One can construct the Hardy-Littlewood maximal function operator f → Mf relative to left translates of the family {Br}. We prove that M is of weak type (1, 1). This complements a result of J.-O. Strömberg concerning maximal functions defined relative to hyperbolic balls in a symmetric space.
Consider a compact zero dimensional (profinite) monoid. While the group of units must be open, a regular D-class need not be open in the ideal it generates. This is the case if and only if the semigroup contains infinitely many copies of a certain semilattice composed of an increasing sequence of idempotents converging to an upper bound.
Using compactifications of free products, two generator compact monoids with these properties are constructed.
We prove that every (locally) contractible topological group is (L)EC and apply these results to homeomorphism groups, free topological groups, reduced products and symmetric products. Our main results are: The free topological group of a θ-contractible space is equiconnected. A paracompact and weakly locally contractible space is locally equiconnected if and only if it has a local mixer. There exist compact metric contractible spaces X whose reduced (symmetric) products are not retracts of the Graev free topological groups F(X) (A(X)) (thus correcting results we published ibidem).
According to an extension of a classical theorem of Bernstein, due to C. Herz, a function on Rn belonging to a Besov space of appropriate order has an absolutely convergent Fourier transform. We establish extensions of this result to Cartan motion groups, for Besov spaces defined with respect to both isotropic and non-isotropic differences.
In this paper it is proved that the principal series of representations of Γ = Z2*…*Z2 may be analytically continued to give uniformly bounded representations on the same Hilbert space, and that these representations are irreducible. Further, the reducibility of the restrictions to Γ ⊂ SL(2, Qp) of the irreducible unitary representations of SL(2, Qp) is examined.
The paper deals with six groups: the unitary, orthogonal, symplectic, Fredholm unitary, special Fredholm orthogonal, and Fredholm symplectic groups of an infinite-dimensional Hilbert space. When each is furnished with the invariant Finsler structure induced by the operator-norm on the Lie algebra, it is shown that, between any two points of the group, there exists a geodesic realising this distance (often, indeed, a unique geodesic), except in the full orthogonal group, in which there are pairs of points that cannot be joined by minimising geodesics, and also pairs that cannot even be joined by minimising paths. A full description is given of each of these possibilities.
For any group G, we introduce the subset S(G) of elements g which are conjugate to for some positive integer k. We show that, for any bounded representation π of G any g in S(G), either π(g) = 1 or the spectrum of π(g) is the full unit circle in C. As a corollary, S(G) is in the kernel of any homomorphism from G to the unitary group of a post-liminal C*-algebra with finite composition series.
Next, for a topological group G, we consider the subset of elements approximately conjugate to 1, and we prove that it is contained in the kernel of any uniformly continuous bounded representation of G, and of any strongly continuous unitary representation in a finite von Neumann algebra.
We apply these results to prove triviality for a number of representations of isotropic simple algebraic groups defined over various fields.
Let G be an exponential Lie group. We study primitive ideals (i.e. kernels of irreducible *-representations of L1(G)), with bounded approximate units (b.a.u.). We prove a result relating the existence of b.a.u. in certain primitive ideals with the geometry of the corresponding Kirillov orbits. This yields for a solvable group of class 2, a characterization of the primitive ideals with b.a.u.
This paper calculates the central Borel 2 cocycles for certain 2-step nilpotent Lie groups G with values in the injectives A of the category of 2nd countable locally compact abelian groups. The G's include, among others, all groups locally isomorphic to a Heisenberg group. The A's are direct sums of vector groups and (possibly infinite dimensional) tori, and in particular include R, T, and Cx. The main results are as follows.
(4.1) Every symmetric central 2 cocycle is trivial.
(4.2) Every central 2 cocycle is cohomologous with a skew symmetric bimultiplicative one (which is necessarily jointly continuous by [7]).
(4.3) The corresponding cohomology group H2cent (G, A) is calculated as the skew symmetric jointly continuous bimultiplicative maps modulo Homcont ([G, G]–, A).
These results generalize the case when G is a connected abelian Lie group and A = T, due to Kleppner [3]. Using standard facts of the cohomology of groups they can be interpreted as classifying all continuous central extensions (1) → A → E → G → (1) of the group G by the abelian group A. Finally some counterexamples are given to extending these results.
It is shown that if {Gn: n = 1, 2,…} is a countable family of Hausdorff kω-topological groups with a common closed subgroup A, then the topological amalgamated free product *AGn exists and is a Hausdorff kω-topological group with each Gn as a closed subgroup. A consequence is the theorem of La Martin that epimorphisms in the category of kω-topological groups have dense image.
A (local) Lie loop is a real analytic manifold M with a base point e and three analytic functions (x, y) → x° y, x\y, x/y: M × M → M (respectively, U × U → M for an open neighbourhood U of e in M) such that the following conditions are satisfied: (i) x ° e = e ° x = e, (ii) x ° (x\y) = y, and (iii) (x/y)° y = x for all x, y ε M (respectively, U). If the multiplication ° is associative, then M is a (local) Lie group. The tangent vector space L(M) in e is equipped with an anticommutative bilinear operation (X, Y) →[X, Y] and a trilinear operation (X, Y, Z) →〈X, Y, Z〉. These are defined as follows: Let B be a convex symmetric open neighbourhood of 0 in L(M) such that the exponential function maps B diffeomorphically onto an open neighbourhood V of e in M and transport the operation ° into L(M) by defining X ° Y = (exp|B)−1((exp X)° (exp Y)) for X and Y in a neighbourhood C of 0 in B such that (exp C) ° (exp C) ⊂ V. Similarly, we transport / and \.
In 1947 I. E. Segal proved that to each non-degenerate ~ -representation R of L1 (= L1 (G) for a compact group G) with representation space , there corresponds a continuous unitary representation W of G, also with representation space , which satisfies
for each fL1 and hk. This was extended to Lp,1p < , in 1970 by E. Hewitt and K. A. Ross. We now generalize this result to any symmetric homogeneous convolution Banach alebra of pseudomeasures on G. Further we prove that the correspondence preserves irreduibility.
Representations of non-type I groups G which may be expressed as an increasing union of type I normal subgroups are considered. Groups with this structure are natural generalisations of the CAR algebra (viewed as a twisted group C*-algebra) and are also group theoretic analogues of AF algebras. This paper gives a systematic account of their representation theory based on a canonical construction of one-cocycles for the G-action on the dual of a normal subgroup. Some examples are considered showing how to construct inquivalent irreducible representations (non-cohomologous cocycles) and also factor representations by a method which generalises the well-known construction of non-isomorphic factors for the CAR algebra.
Let G be a group acting faithfully on a homogeneous tree of order p + 1, p > 1. Let be the space of functions on the Poission boundary ω, of zero mean on ω. When p is a prime. G is a discrete subgroup of PGL2(Qp) of finite covolume. The representations of the special series of PGL2(Qp), Which are irreducible and unitary in an appropriate completion of , are shown to be reducible when restricted to G. It is proved that these representations of G are algebraically reducible on and topologically irreducible on endowed with the week topology.