To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal property, and their representations are faithful if the generating isometries satisfy a joint properness condition. When applied to right-angled Artin groups this yields a uniqueness theorem for the C*-algebra generated by a collection of isometries such that any two of them either *-commute or else have orthogonal ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by Brieskorn and Saito, and Deligne.
A class of totally disconnected groups consisting of partial direct products on an index set is examined. For such a group, the scale function is found, and for automorphisms arising from permutations of the index set, the tidy subgroups are characterised. When applied to the case where the index set is a finitely-generated free group and the permutation is translation by an element x of the group, the scale depends on the cyclically reduced form of x and the tidy subgroup on the element which conjugates x to its cyclically reduced form.
Pointwise bounds for characters of representations of the classical, compact, connected, simple Lie groups are obtained with which allow us to study the singularity of central measures. For example, we find the minimal integer k such that any continuous orbital measure convolved with itself k times belongs to L2. We also prove that if k = rank G then μ 2k ∈ L1 for all central, continuous measures μ. This improves upon the known classical result which required the exponent to be dimension of the group G.
For a real vector space V acted on by a group K and fixed x and y in V, we consider the problem of finding the minimum (respectively, maximum) distance, relative to a K-invariant convex function on V, between x and elements of the convex hull of the K-orbit of y. We solve this problem in the case where V is a Euclidean space and K is a finite reflection group acting on V. Then we use this result to obtain an analogous result in the case where K is a maximal compact subgroup of a reductive group G with adjoint action on the vector component ρ of a Cartan decomposition of Lie G. Our results generalize results of Li and Tsing and of Cheng concerning distances to the convex hulls of matrix orbits.
We extend an uncertainty principle due to Cowling and Price to Euclidean spaces, Heisenberg groups and the Euclidean motion group of the plane. This uncertainty principle is a generalisation of a classical result due to Hardy. We also show that on the real line this uncertainty principle is almost equivalent to Hardy's theorem.
The Plancherel formula for various semisimple homogeneous spaces with non-reductive stability group is derived within the framework of the Bonnet Plancherel formula for the direct integral decomposition of a quasi-regular representation. These formulas represent a continuation of the author's program to establish a new paradigm for concrete Plancherel analysis on homogeneous spaces wherein the distinction between finite and infinite multiplicity is de-emphasized. One interesting feature of the paper is the computation of the Bonnet nuclear operators corresponding to certain exponential representations (roughly those induced from infinite-dimensional representations of a subgroup). Another feature is a natural realization of the direct integral decomposition over a canonical set of concrete irreducible representations, rather than over the unitary dual.
Let K be a nonarchimedean local field, let L be a separable quadratic extension of K, and let h denote a nondegenerate sesquilinear formk on L3. The Bruhat-Tits building associated with SU3(h) is a tree. This is applied to the study of certain groups acting simply transitively on vertices of the building associated with SL(3, F), F = Q3 or F3((X)).
We study the Cesàro operator on the classical group G and give a necessary and sufficient condition on the index α = α(G) for which the operator is convergent to f(U) for any continuous function f as N → ∞. The result in this paper solves a question posed by Gong in the book Harmonic analysis on classical groups.
Let G be a connected Lie group with Lie algebra g and a1, …, ad an algebraic basis of g. Further let Ai denote the generators of left translations, acting on the Lp-spaces Lp(G; dg) formed with left Haar measure dg, in the directions ai. We consider second-order operators in divergence form corresponding to a quadratic form with complex coefficients, bounded Hölder continuous principal coefficients cij and lower order coefficients ci, c′ii, c0 ∈ L∞ such that the matrix C= (cij) of principal coefficients satisfies the subellipticity condition uniformly over G.
We discuss the hierarchy relating smoothness properties of the coefficients of H with smoothness of the kernel and smoothness of the domain of powers of H on the Lρ-spaces. Moreover, we present Gaussian type bounds for the kernel and its derivatives.
Similar theorems are proved for strongly elliptic operators in non-divergence form for which the principal coefficients are at least once differentiable.
We restrict the metaplectic representation to subgroups G of the symplectic group associated to equivariant holomorphic maps into the Siegel disc. We describe the invariant subspaces of the decomposition, and reduce the problem to the decomposition of a space of ‘harmonic’ polynomials under the action of the maximal compact subgroup of G.
We use the second derivative of intertwining operators to realize a unitary structure for the irreducible subrepresentations in the reducible spherical principal series of U(1, n). These representations can also be realized as the kernels of certain invariant first-order differential operators acting on sections of homogeneous bundles over the hyperboloid (U(1) × U(n))/U(1, n).
The Plancherel formula for the horocycle space, and several generalizations, is derived within the framework of quasi-regular representations which have monomial spectrum. The proof uses only machinery from the Penney-Fujiwara distribution-theoretic technique; no special semisimple harmonic analysis is needed. The Plancherel formulas obtained include the spectral distributions and the intertwining operators that effect the direct integral decomposition of the quasi-regular representation.
A weighted generalization of a p-Sidon set, called an (a, p)-Sidon set, is introduced and studied for infinite, non-abelian, connected, compact groups G. The entire dual object Ĝ is shown never to be central (p − 1, p)-Sidon for 1 ≦ p < 2, nor central (1 + ε, 2)-Sidon for ε > 0. Local (p, p)-Sidon sets are shown to be identical to local Sidon sets. Examples are constructed of infinite non-Sidon sets which are central (2p − 1, p)-Sidon, or (p − 1, p)-Sidon, for 1 < p < 2. Full m-fold FTR sets are proved not to be central (a, 2m/(m + 1))-Sidon for any a > 1.
For a compact group G, we compute the Kazhdan constants κ(G, G) obtained by taking G itself as a generating subset. We get κ(G, G) = if G is finite of order n, and κ(G, G) = if G is infinite.
Lipschitz spaces are important function spaces with relations to Hp spaces and Campanato spaces, the other two important function spaces in harmonic analysis. In this paper we give some characterizations for Lipschitz spaces on compact Lie groups, which are analogues of results in Euclidean spaces.
Let G be a Lie group, Go the connected component of G that contains the identity, and Aut G the group of all topological automorphisms of G. In the case when G/Go is finite and G has a faithful representation, we obtain a necessary and sufficient condition for G so that Aut G has finitely many components in terms of the maximal central torus in Go.
Let (ℋ, G, U) be a continuous representation of the Lie group G by bounded operators g ↦ U(g) on the Banach space ℋ and let (ℋ, g, dU) denote the representation of the Lie algebra g obtained by differentiation. If a1,…, ad′ is a Lie algebra basis of g and Ai = dU(ai) then we examine elliptic regularity properties of the subelliptic operators where (cij) is a real-valued strictly positive-definite matrix and c0, c1,…, cd′ ∈ C. We first introduce a family of Lipschitz subspaces ℋγ, γ > 0, of ℋ which interpolate between the Cn-subspaces of the representation and for which the parameter γ is a continuous measure of differentiability. Secondly, we give a variety of characterizations of the spaces in terms of the semigroup generated by the closure of H and the group representation. Thirdly, for sufficiently large values of Re c0 the fractional powers of the closure of H are defined, and we prove that D()γ⊆γ′, for γ′ < 2γ/r where r is the rank of the basis. Further we establish that 2γ/r is the optimal regularity value and it is attained for unitary representations or for the representations obtained by restricting U to ℋγ. Many other regularity properties are obtained.
We consider coactions of a locally compact group G on a C*-algebra A, and the associated crossed product C*-algebra A× G. Given a normal subgroup N of G, we seek to decompose A× G as an iterated crossed product (A× G/ N) × N, and introduce notions of twisted coaction and twisted crossed product which make this possible. We then prove a duality theorem for these twisted crossed products, and discuss how our results might be used, especially when N is abelian.