To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\rm F}$ be a non-Archimedean locally compact field of residue characteristic $p$, let ${\rm D}$ be a finite-dimensional central division ${\rm F}$-algebra and let ${\rm R}$ be an algebraically closed field of characteristic different from $p$. We define banal irreducible ${\rm R}$-representations of the group ${\rm G}={\rm GL}_{m}({\rm D})$. This notion involves a condition on the cuspidal support of the representation depending on the characteristic of ${\rm R}$. When this characteristic is banal with respect to ${\rm G}$, in particular when ${\rm R}$ is the field of complex numbers, any irreducible ${\rm R}$-representation of ${\rm G}$ is banal. In this article, we give a classification of all banal irreducible ${\rm R}$-representations of ${\rm G}$ in terms of certain multisegments, called banal. When ${\rm R}$ is the field of complex numbers, our method provides a new proof, entirely local, of Tadić’s classification of irreducible complex smooth representations of ${\rm G}$.
Using theta correspondence, we classify the irreducible representations of Mp2n in terms of the irreducible representations of SO2n+1 and determine many properties of this classification. This is a local Shimura correspondence which extends the well-known results of Waldspurger for n=1.
In this paper, it is shown that there exists a connected topological group which is not homeomorphic to any $\omega $-narrow topological group, and also that there exists a zero-dimensional topological group $G$ with neutral element $e$ such that the subspace $X = G\setminus \{e\}$ is not homeomorphic to any topological group. These two results give negative answers to two open problems in Arhangel’skii and Tkachenko [Topological Groups and Related Structures (Atlantis Press, Amsterdam, 2008)]. We show that if a compact topological group is a $K$-space, then it is metrisable. This result gives an affirmative answer to a question posed by Malykhin and Tironi [‘Weakly Fréchet–Urysohn and Pytkeev spaces’, Topology Appl. 104 (2000), 181–190] in the category of topological groups. We also prove that a regular $K$-space $X$ is a weakly Fréchet–Urysohn space if and only if $X$has countable tightness.
We give a generalisation of the Cartan decomposition for connected compact Lie groups of type B motivated by the work on visible actions of Kobayashi [‘A generalized Cartan decomposition for the double coset space $(U(n_{1})\times U(n_{2})\times U(n_{3})) \backslash U(n)/ (U(p)\times U(q))$’, J. Math. Soc. Japan59 (2007), 669–691] for type A groups. Suppose that $G$ is a connected compact Lie group of type B, $\sigma $ is a Chevalley–Weyl involution and $L$, $H$ are Levi subgroups. First, we prove that $G=LG^{\sigma }H$ holds if and only if either (I) both $H$ and $L$ are maximal and of type A, or (II) $(G,H)$ is symmetric and $L$ is the Levi subgroup of an arbitrary maximal parabolic subgroup up to switching $H$ and $L$. This classification gives a visible action of $L$ on the generalised flag variety $G/H$, as well as that of the $H$-action on $G/L$ and of the $G$-action on $(G\times G)/(L\times H)$. Second, we find an explicit ‘slice’ $B$ with $\dim B=\mathrm {rank}\, G$ in case I, and $\dim B=2$ or $3$ in case II, such that a generalised Cartan decomposition $G=LBH$holds. An application to multiplicity-free theorems of representations is also discussed.
In our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.
In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.
As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.
We construct a two-parameter family of actions ωk,a of the Lie algebra 𝔰𝔩(2,ℝ) by differential–difference operators on ℝN∖{0}. Here k is a multiplicity function for the Dunkl operators, and a>0 arises from the interpolation of the two 𝔰𝔩(2,ℝ) actions on the Weil representation of Mp(N,ℝ) and the minimal unitary representation of O(N+1,2). We prove that this action ωk,a lifts to a unitary representation of the universal covering of SL (2,ℝ) , and can even be extended to a holomorphic semigroup Ωk,a. In the k≡0case, our semigroup generalizes the Hermite semigroup studied by R. Howe (a=2)and the Laguerre semigroup studied by the second author with G. Mano (a=1) . One boundary value of our semigroup Ωk,a provides us with (k,a) -generalized Fourier transforms ℱk,a, which include the Dunkl transform 𝒟k (a=2)and a new unitary operator ℋk (a=1) , namely a Dunkl–Hankel transform. We establish the inversion formula, a generalization of the Plancherel theorem, the Hecke identity, the Bochner identity, and a Heisenberg uncertainty relation for ℱk,a. We also find kernel functions for Ωk,a and ℱk,a for a=1,2in terms of Bessel functions and the Dunkl intertwining operator.
We establish a character multiplicity duality for a certain natural class of nonlinear (nonalgebraic) groups arising as two-fold covers of simply laced real reductive algebraic groups. This allows us to extend part of the formalism of the local Langlands conjecture to such groups.
The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).
Let G be a p-adic reductive group and let U0 be the unipotent radical of a minimal parabolic subgroup of G. We introduce a Fourier transform defined on the space of smooth Whittaker functions on G which are compactly supported modulo U0. We determine its image. The proof follows the proof of Heiermann for the functions on the group.
During the proof, we establish an inversion formula. This formula allows us to prove that an irreducible smooth representation of G, which has a Whittaker model in the space of smooth Whittaker functions on G which are compactly supported modulo U0, is cuspidal.
This work gave us the opportunity to prepare a framework for the study of harmonic analysis on p-adic reductive symmetric spaces: B-matrices and constant term; a study of wave packets.
This paper studies two new kinds of affine Springer fibres that are adapted to the root valuation strata of Goresky–Kottwitz–MacPherson. In addition it develops various linear versions of Katz's Hodge–Newton decomposition.
For V a two-dimensional p-adic representation of Gℚp, we denote by B(V ) the admissible unitary representation of GL2(ℚp) attached to V under the p-adic local Langlands correspondence of GL2(ℚp) initiated by Breuil. In this paper, building on the works of Berger–Breuil and Colmez, we determine the locally analytic vectors B(V )an of B (V )when V is irreducible, crystabelian and Frobenius semisimple with distinct Hodge–Tate weights; this proves a conjecture of Breuil. Using this result, we verify Emerton’s conjecture that dim Ref η⊗ψ (V )=dim Exp η∣⋅∣⊗xψ (B (V )an ⊗(x∣⋅∣∘det ))for those V which are irreducible, crystabelian and Frobenius semisimple.
We develop the Springer theory of Weyl group representations in the language of symplectic topology. Given a semisimple complex group G, we describe a Lagrangian brane in the cotangent bundle of the adjoint quotient 𝔤/G that produces the perverse sheaves of Springer theory. The main technical tool is an analysis of the Fourier transform for constructible sheaves from the perspective of the Fukaya category. Our results can be viewed as a toy model of the quantization of Hitchin fibers in the geometric Langlands program.
If G is a semisimple Lie group of real rank at least two and Γ is an irreducible lattice in G, then every homomorphism from Γ to the outer automorphism group of a finitely generated free group has finite image.
In this article a general framework for studying analytic representations of a real Lie group G is introduced. Fundamental topological properties of the representations are analyzed. A notion of temperedness for analytic representations is introduced, which indicates the existence of an action of a certain natural algebra 𝒜(G) of analytic functions of rapid decay. For reductive groups every Harish-Chandra module V is shown to admit a unique tempered analytic globalization, which is generated by V and 𝒜(G) and which embeds as the space of analytic vectors in all Banach globalizations of V.
Poincaré's Polyhedron Theorem is a widely known valuable tool in constructing manifolds endowed with a prescribed geometric structure. It is one of the few criteria providing discreteness of groups of isometries. This work contains a version of Poincaré's Polyhedron Theorem that is applicable to constructing fibre bundles over surfaces and also suits geometries of non-constant curvature. Most conditions of the theorem, being as local as possible, are easy to verify in practice.
The construction (by Kapranov) of the space of infinitesimal paths on a manifold is extended to include higher-dimensional infinitesimal objects, encoding contractions of infinitesimal loops. This full infinitesimal groupoid is shown to have the algebra of polyvector fields as its nonlinear cohomology.
Let M=G/K be a generalized flag manifold, that is, an adjoint orbit of a compact, connected and semisimple Lie group G. We use a variational approach to find non-Kähler homogeneous Einstein metrics for flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume.
Let G be a complex connected reductive group. The Parthasarathy–Ranga Rao–Varadarajan (PRV) conjecture, which was proved independently by S. Kumar and O. Mathieu in 1989, gives explicit irreducible submodules of the tensor product of two irreducible G-modules. This paper has three aims. First, we simplify the proof of the PRV conjecture, then we generalize it to other branching problems. Finally, we find other irreducible components of the tensor product of two irreducible G-modules that appear for ‘the same reason’ as the PRV ones.
The local Langlands conjectures imply that to every generic supercuspidal irreducible representation of G2 over a p-adic field, one can associate a generic supercuspidal irreducible representation of either PGSp6 or PGL3. We prove this conjectural dichotomy, demonstrating a precise correspondence between certain representations of G2 and other representations of PGSp6 and PGL3. This correspondence arises from theta correspondences in E6 and E7, analysis of Shalika functionals, and spin L-functions. Our main result reduces the conjectural Langlands parameterization of generic supercuspidal irreducible representations of G2 to a single conjecture about the parameterization for PGSp 6.
We set up a formalism of endoscopy for metaplectic groups. By defining a suitable transfer factor, we prove an analogue of the Langlands–Shelstad transfer conjecture for orbital integrals over any local field of characteristic zero, as well as the fundamental lemma for units of the Hecke algebra in the unramified case. This generalizes prior work of Adams and Renard in the real case and serves as a first step in studying the Arthur–Selberg trace formula for metaplectic groups.