To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Observations of binary systems indicate that main sequence stars follow an empirical mass-luminosity relation L ~ M^3. The physical basis for this can be understood by considering the two basic relations of stellar structure, namely hydrostatic equilibrium and radiative diffusion. In practice, the transport of energy from the stellar interior toward the surface sometimes occurs through convection instead of radiative diffusion; this has important consequences for stellar structure and thus for the scaling of luminosity.
We walk through the different epochs and eras of the universe, going forward in time from the Hot Big Bang. In the earliest universe, radiation (photons) dominated over matter. As the universe cools, electrons are able to recombine with protons, then helium and other light elements were formed in the first few minutes. Cosmic inflation is posited to overcome several problems, but investigations to probe and perhaps confirm inflation are ongoing.
In our everyday experience, there is another way we sometimes infer distance, namely by the change in apparent brightness for objects that emit their own light, with some known power or luminosity. For example, a hundred watt light bulb at close distance appears a lot brighter than the same bulb from far away. Similarly, for a star, what we observe as apparent brightness is really a measure of the flux of light, i.e. energy emitted per unit time per unit area.
Radiation generated in the deep interior of a star undergoes a diffusion between multiple encounters with the stellar material before it can escape freely into space from the stellar surface. We define the optical depth by the number of mean free paths a photon takes from the center to the surface. This picture of photons undergoing a random walk through the stellar interior can be formalized in terms of a di usion model for radiation transport in the interior.
Compared to stars, the region between them, called the interstellar medium or "ISM," is very low density; but it is not a completely empty vacuum. A key theme in this chapter is that stars are themselves formed out of this ISM material through gravitational contraction, making for a star-gas-star cycle. We explore the characteristics of cold and warm regions of the ISM and their roles in star formation.
Breaking wave impacts on rigid structures have been extensively studied, yet the role of structural elasticity in shaping the impact and response remains insufficiently understood. In this study, we experimentally investigate the hydroelastic behaviour of a vertical cantilever plate subjected to multimodal solitary breaking wave impacts. The plate is mounted near the still water level on a 1 : 10 sloping beach, and the wave height-to-depth ratio ($H/h$) is varied from 0.15 to 0.40 to systematically control the impact type from non-breaking to highly aerated wave impacts. We show that aeration significantly affects hydroelastic impacts. The spatio-temporal extent of the impact pressure on the elastic plate increases with air entrapment, while the peak pressure becomes highly sensitive as the wave approaches the flip-through regime. Pressure oscillations associated with bubble formation induce high-frequency structural vibrations, particularly under low-aeration conditions. Furthermore, we find that the elasticity has a limited effect on the peak pressure, impact duration and impulse, but increases the maximum quasi-hydrostatic force on the plate for the scenarios investigated. Following the impact, two distinct free-top deflections are identified, i.e. a deflection $\Delta x_{\textit{imp}}$ with high acceleration induced by the impact pressure and a deflection $\Delta x_{{hp}}$ with high magnitude caused by the maximum quasi-hydrostatic pressure. These deflections scale with the Cauchy number as $\Delta x_{\textit{imp}}/l \sim Ca_{\textit{imp}}/6$ and $\Delta x_{{hp}}/l \sim Ca_{{hp}}/12$ (where l is the plate length), exhibiting parabolic and linear trends with $H/h$, respectively. This work presents a benchmark dataset and introduces a predictive law for structural deflection, providing practical insights into hydroelastic effects across various impact regimes.
Astrobiology is a scientific field that is very interdisciplinary and developing very fast, with many new discoveries generating a high level of attention in both the scientific community and the public. A central goal of astrobiology is to discover life beyond Earth which is, with our current instrumentation and knowledge, arguably within our reach. However, knowledge exchange crossing disciplinary boundaries is becoming increasingly challenging due to different usage of nomenclature and scientific controversies often limited to subdisciplines. There have been some efforts to compile organized databases of terms, concepts and other relevant material within some of the subfields contributing to astrobiology, for example through manually curated online portals designed to benefit students, teachers and practitioners of astrobiology-related research. However, the developments within the subfields and the potentially premature communication of research findings are too fast for objective research portals to remain reliable and up-to-date enough to enable well-informed scientific discussions. We suggest here a novel strategy for developing an online tracers portal as a self-maintaining and self-updating information platform, that would allow not only for a relatively unbiased selection of research results, but also provide fast access to latest scientific discoveries together with potential controversies, such that users of the tracers portal can form their own opinion on all available data rather than obtaining an already filtered and potentially biased selection of information.
Hubble’s law gives us the simple and obvious interpretation that we currently live in an expanding universe. The inverse of Hubble’s constant defines the "Hubble time" which effectively marks the time in the past since the expansion began. more realistically, one would expect the universe expansion to be slowed by the persistent inward pull of gravity from its matter. We consider how various theoretical models for the universe connect with the observable redshift that indicates its expansion.
We have seen how a star’s color or peak wavelength indicates its characteristic temperature near the stellar surface. But what about the temperature in the star’s deep interior? Intuitively, we expect this to be much higher than at the surface, but under what conditions does it become hot enough to allow for nuclear fusion to power the star’s luminosity? And how does it scale quantitatively with the overall stellar properties, like mass, radius, and luminosity? To answer these questions, we identify two distinct considerations.
The post-main-sequence evolution of stars with higher initial mass (>8 solar masses) has some distinct differences from those of solar and intermediate-mass stars. We show how multiple-shell burning can lead to core-collapse supernovae, which are important in generating elements heavier than iron. Some supernovae can lead to the curious stellar end points of neutron stars and black holes.
Exoplanets are planets orbiting stars other than our sun. While some have now been detected (or confirmed) by direct imaging, most exoplanet detections have been made via two other more indirect techniques, known as the radial velocity and transit methods. These methods have analogs in the study of stellar binary systems, as outlined in Chapter 10. We explore the population of known exoplanets and how we must compensate for observational biases inherent in each of these techniques.
We start with some of the historical work on measuring distances to galaxies, leading to the Hubble (or Hubble-Lemaitre) law, a linear proportionality between recession velocity and and a galaxy’s distance, with a proportionality constant known as the Hubble constant. For more distant galaxies, it becomes increasingly difficult to detect and resolve even giant stars like Cepheid variables as individual objects, limiting their utility in testing the Hubble law to larger distances and redshifts. For much larger distances, an important alternative method is the Tully–Fisher relation.
To test which of these models applies to our universe, one needs to extend redshift measurements to large distances, out to several Giga-light years. The most successful approach has been to use white dwarf supernovae (SN type Ia) as very luminous standard candles. One of the greatest surprises of modern astronomy is that the expansion of the universe must be accelerating! This implies there must be a positive, repulsive force that pushes galaxies apart, in opposition to gravity. We dub this force "dark energy."
Earth’s moon is quite distinct from other moons in the solar system, in being a comparable size to Earth. We explore the theory that a giant impact in the chaotic early solar system led to the Moon’s formation, and bombardment by ice-laden asteroids provided the abundant water we find on our planet. Further we find that Earth’s magnetic field shields us from solar wind protons, that protect our atmosphere from being stripped away. The icy moons of Jupiter and Saturn are the best targets for exploring if life exists elsewhere in the solar system.
The close proximity of the Sun, and its extreme apparent brightness, makes it by far the most important star for lives here on Earth. In modern times we have access to powerful telescopes, both on the ground and in space, that observe and monitor the Sun over a wide range of wavelength bands. These vividly demonstrate that the Sun is in fact highly structured and variable over a wide range of spatial and temporal scales.