To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This note corrects an error in the formula to obtain the Whittle index using the Sherman–Morrison formula in Akbarzadeh and Mahajan (2022). Also, some other minor typos are highlighted.
In the UK, the incidence and prevalence of inflammatory bowel disease (IBD) is increasing in paediatric populations. Environmental factors including acute gastroenteritis episodes (AGE) may impact IBD development. Infant rotavirus vaccination has been shown to significantly reduce AGE. This study aims to explore the association between vaccination with live oral rotavirus vaccines and IBD development. A population-based cohort study was used, analysing primary care data from the Clinical Practice Research Datalink Aurum. Participants included children born in the UK from 2010 to 2015, followed from a minimum of 6 months old to a maximum of 7 years old. The primary outcome was IBD, and the primary exposure was rotavirus vaccination. Cox regression analysis with random intercepts for general practices was undertaken, with adjustment for potential confounding factors. In a cohort of 907,477 children, IBD was recorded for 96 participants with an incidence rate of 2.1 per 100,000 person-years at risk. The univariable analysis hazard ratio (HR) for rotavirus vaccination was 1.45 (95% confidence interval (CI) 0.93–2.28). Adjustment in the multivariable model attenuated the HR to 1.19 (95% CI 0.53–2.69). This study shows no statistically significant association between rotavirus vaccination and development of IBD. However, it provides further evidence for the safety of live rotavirus vaccination.
We find sufficient conditions on explosion/non-explosion for continuous-state branching processes with competition in a Lévy random environment. In particular, we identify the necessary and sufficient conditions on explosion/non-explosion when the competition function is a power function and the Lévy measure of the associated branching mechanism is stable.
Genomic epidemiology is routinely used worldwide to interrogate infectious disease dynamics. Multiple computational tools exist that reconstruct transmission networks by coupling genomic data with epidemiological models. Resulting inferences can improve our understanding of pathogen transmission dynamics, and yet the performance of these tools has not been evaluated for tuberculosis (TB), a disease process with complex epidemiology including variable latency and within-host heterogeneity. Here, we performed a systematic comparison of six publicly available transmission reconstruction models, evaluating their accuracy when predicting transmission events in simulated and real-world Mycobacterium tuberculosis outbreaks. We observed variability in the number of transmission links that were predicted with high probability (P ≥ 0.5) and low accuracy of these predictions against known transmission in simulated outbreaks. We also found a low proportion of epidemiologically supported case–contact pairs were identified in our real-world TB clusters. The specificity of all models was high, and a relatively high proportion of the total transmission events predicted by some models were true links, notably with TransPhylo, Outbreaker2, and Phybreak. Our findings may inform the choice of tools in TB transmission analyses and underscore the need for caution when interpreting transmission networks produced using probabilistic approaches.
Evolutionary studies on Dengue virus (DENV) in endemic regions are necessary since naturally occurring mutations may lead to genotypic variations or shifts in serotypes, which may lead to future outbreaks. Our study comprehends the evolutionary dynamics of DENV, using phylogenetic, molecular clock, skyline plots, network, selection pressure, and entropy analyses based on partial CprM gene sequences. We have collected 250 samples, 161 in 2017 and 89 in 2018. Details for the 2017 samples were published in our previous article and that of 2018 are presented in this study. Further evolutionary analysis was carried out using 800 sequences, which incorporate the study and global sequences from GenBank: DENV-1 (n = 240), DENV-3 (n = 374), and DENV-4 (n = 186), identified during 1944–2020, 1956–2020, and 1956–2021, respectively. Genotypes V, III, and I were identified as the predominant genotypes of the DENV-1, DENV-3, and DENV-4 serotypes, respectively. The rate of nucleotide substitution was found highest in DENV-3 (7.90 × 10−4 s/s/y), followed by DENV-4 (6.23 × 10−4 s/s/y) and DENV-1 (5.99 × 10−4 s/s/y). The Bayesian skyline plots of the Indian strains revealed dissimilar patterns amongst the population size of the three serotypes. Network analyses showed the presence of different clusters within the prevalent genotypes. The data presented in this study will assist in supplementing the measures for vaccine development against DENV.
Data sharing is a requisite for developing data-driven innovation and collaboration at the local scale. This paper aims to identify key lessons and recommendations for building trustworthy data governance at the local scale, including the public and private sectors. Our research is based on the experience gained in Rennes Metropole since 2010 and focuses on two thematic use cases: culture and energy. For each one, we analyzed how the power relations between actors and the local public authority shape the modalities of data sharing and exploitation. The paper will elaborate on challenges and opportunities at the local level, in perspective with the national and European frameworks.
We show that for a fixed $q$, the number of $q$-ary $t$-error correcting codes of length $n$ is at most $2^{(1 + o(1)) H_q(n,t)}$ for all $t \leq (1 - q^{-1})n - 2\sqrt{n \log n}$, where $H_q(n, t) = q^n/ V_q(n,t)$ is the Hamming bound and $V_q(n,t)$ is the cardinality of the radius $t$ Hamming ball. This proves a conjecture of Balogh, Treglown, and Wagner, who showed the result for $t = o(n^{1/3} (\log n)^{-2/3})$.
Without protective immunity, recurrent sexually transmitted infections (STI) could occur. In this study, we retrospectively collected STI diagnosis records from public STI clinics attended by an average of 6,000 male patients annually in Hong Kong in 2009–2019. We estimated the prevalence of three bacterial STI (syphilis, chlamydia and gonorrhoea) coinfection from 2009 to 2019, and examined the factors associated with coinfection in 2014/15 and repeat infection in 2009–2019. We observed an increasing coinfection prevalence in male attendees with bacterial STI over the years, which reached the highest level of 15% in 2019. Among 3,698 male patients in 2014–2015, chlamydia/gonorrhoea coinfection was the commonest among all coinfections (77%). Factors such as young age (29 or below), HIV-positive status, and a history of concurrent genital warts/herpes were positively associated with coinfection in 2014/15 in multivariable logistic regression. Of all male patients with STI coinfection in 2014/15, those of age 30–49 and who self-reported as men who have sex with men (MSM) were more likely to have been repeatedly infected in 2009–2019. The results support the implementation of regular multi-STI testing as an STI control strategy for selected communities like MSM and people living with HIV.
Candidemia is a life-threatening infectious disease that has varying incidences. Previous studies revealed the differences in clinical characteristics and outcomes between non-hospital-onset (NHO) and hospital-onset (HO) candidemia. This 4-year retrospective research included adult patients with candidemia in a tertiary medical centre in Taiwan, and cases were categorised as NHO and HO candidemia. Survival analysis and risk factors associated with in-hospital mortality were performed using the Kaplan–Meier method and multivariate Cox proportional-hazards models. The analysis included 339 patients, and the overall incidence was 1.50 per 1,000 admission person-year. Of the cases, 82 (24.18%) were NHO candidemia, and 57.52% (195/339) of patients were diagnosed with at least one malignancy. C. albicans was the most commonly isolated species, accounting for 52.21%. Patients with NHO candidemia had a higher proportion of C. glabrata but a lower ratio of C. tropicalis in comparison to the HO group. The all-cause in-hospital mortality rate was 55.75%. Multivariate Cox proportional-hazards models showed that NHO candidemia was a better outcome predictor (adjusted hazard ratio, 0.44). The administration of antifungal therapy within 2 days was a protective factor. In conclusion, NHO candidemia showed distinct microbiological characteristics and a better outcome than HO candidemia.
We extend a recent argument of Kahn, Narayanan and Park ((2021) Proceedings of the AMS 149 3201–3208) about the threshold for the appearance of the square of a Hamilton cycle to other spanning structures. In particular, for any spanning graph, we give a sufficient condition under which we may determine its threshold. As an application, we find the threshold for a set of cyclically ordered copies of $C_4$ that span the entire vertex set, so that any two consecutive copies overlap in exactly one edge and all overlapping edges are disjoint. This answers a question of Frieze. We also determine the threshold for edge-overlapping spanning $K_r$-cycles.
Maritime engineering relies on model forecasts for many different processes, including meteorological and oceanographic forcings, structural responses, and energy demands. Understanding the performance and evaluation of such forecasting models is crucial in instilling reliability in maritime operations. Evaluation metrics that assess the point accuracy of the forecast (such as root-mean-squared error) are commonplace, but with the increased uptake of probabilistic forecasting methods such evaluation metrics may not consider the full forecasting distribution. The statistical theory of proper scoring rules provides a framework in which to score and compare competing probabilistic forecasts, but it is seldom appealed to in applications. This translational paper presents the underlying theory and principles of proper scoring rules, develops a simple panel of rules that may be used to robustly evaluate the performance of competing probabilistic forecasts, and demonstrates this with an application to forecasting surface winds at an asset on Australia’s North–West Shelf. Where appropriate, we relate the statistical theory to common requirements by maritime engineering industry. The case study is from a body of work that was undertaken to quantify the value resulting from an operational forecasting product and is a clear demonstration of the downstream impacts that statistical and data science methods can have in maritime engineering operations.
We prove that if a unimodular random graph is almost surely planar and has finite expected degree, then it has a combinatorial embedding into the plane which is also unimodular. This implies the claim in the title immediately by a theorem of Angel, Hutchcroft, Nachmias and Ray [2]. Our unimodular embedding also implies that all the dichotomy results of [2] about unimodular maps extend in the one-ended case to unimodular random planar graphs.
Alweiss, Lovett, Wu, and Zhang introduced $q$-spread hypergraphs in their breakthrough work regarding the sunflower conjecture, and since then $q$-spread hypergraphs have been used to give short proofs of several outstanding problems in probabilistic combinatorics. A variant of $q$-spread hypergraphs was implicitly used by Kahn, Narayanan, and Park to determine the threshold for when a square of a Hamiltonian cycle appears in the random graph $G_{n,p}$. In this paper, we give a common generalization of the original notion of $q$-spread hypergraphs and the variant used by Kahn, Narayanan, and Park.
Helminthiases cause significant health deficiencies among children. Mass administration of anthelminthic drugs has had significant results to counter these effects. We assessed the effects on and determinants of treatment coverage of community-directed treatment among children in Zambia, using cross-sectional survey data, and using chi-square test and multilevel mixed-effects model. Of 1,416 children, 51.5% were males and 48.5% were females, while 52.7%, were school-age, and 47.3% were preschool-age. Overall treatment coverage was 53.7% (95% confidence interval (CI) 51.1, 56.4). More preschool-age children were treated compared to school-age ones, 65.2% versus 43.4%, P < 0.001. Similarly, more children under community-directed intervention were treated compared to regular mass drug administration (65.2% versus 51.1 %, P < 0.001). Treatment among school-age participants was associated with being male (Adjusted Odds Ratio (AOR 1.83, 95%CI 1.23–2.72), receiving community-directed treatment (AOR 5.53; 95%CI 3.41–8.97), and shorter distance to health facility (AOR 2.20; 95%CI 1.36–3.56). Among preschool-aged participants, treatment was associated with being residents of Siavonga district (AOR 0.03; 95%CI 0.01–0.04) and shorter distance to health facility (AOR 0.35; 95%CI 0.21–0.59). Community-directed treatment can be used to increase treatment coverage, thereby contribute to 2030 vision of ending epidemics of neglected tropical diseases.
A Canadian outbreak investigation was initiated in January 2022 after a cluster of cases of Shiga-toxin-producing Escherichia coli (STEC) O157 was identified through whole genome sequencing (WGS). Exposure information was collected through case interviews. Traceback investigations were conducted, and samples from case homes, retail, and the manufacturer were tested for STEC O157. Fourteen cases were identified in two provinces in Western Canada, with isolates related by 0–5 whole genome multi-locus sequence typing allele differences. Symptom onset dates ranged from 11 December 2021 to 7 January 2022. The median age of cases was 29.5 (range 0–61); 64% were female. No hospitalisations or deaths were reported. Of 11 cases with information available on fermented vegetable exposures, 91% (10/11) reported consuming Kimchi Brand A during their exposure period. The traceback investigation identified Manufacturer A in Western Canada as the producer. One open and one closed sample of Kimchi Brand A tested positive for STEC O157, with isolates considered genetically related by WGS to the outbreak strain. Napa cabbage within the kimchi product was hypothesised as the most likely source of contamination. This paper summarises the investigation into this STEC O157 outbreak associated with kimchi, the first reported outside of East Asia.
We investigate the feasibility of cyber risk transfer through insurance-linked securities (ILS). On the investor side, we elicit the preferred characteristics of cyber ILS and the corresponding return expectations. We then estimate the cost of equity of insurers and compare it to the Rate on Line expected by investors to match demand and supply in the cyber ILS market. Our results show that cyber ILS will work for both cedents and investors if the cyber risk is sufficiently well understood. Thus, challenges related to cyber risk modeling need to be overcome before a meaningful cyber ILS market may emerge.
Gaussian graphical models are useful tools for conditional independence structure inference of multivariate random variables. Unfortunately, Bayesian inference of latent graph structures is challenging due to exponential growth of $\mathcal{G}_n$, the set of all graphs in n vertices. One approach that has been proposed to tackle this problem is to limit search to subsets of $\mathcal{G}_n$. In this paper we study subsets that are vector subspaces with the cycle space $\mathcal{C}_n$ as the main example. We propose a novel prior on $\mathcal{C}_n$ based on linear combinations of cycle basis elements and present its theoretical properties. Using this prior, we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge inclusion estimates computed with our technique are comparable to estimates from the standard technique despite searching a smaller graph space, and (ii) the vector space perspective enables straightforward implementation of MCMC algorithms.
Reliable short-term load forecasting is vital for the planning and operation of electric power systems. Short-term load forecasting is a critical component used in purchasing and generating electric power, dispatching, and load switching, which is essential for balancing supply and demand and mitigating the risk of power shortages. This is becoming even more critical given the transition to carbon-neutral technologies in the energy sector. Specifically, since renewable sources are inherently uncertain, a distributed energy system with renewable generation units is more heavily dependent on accurate load forecasts for demand-response management than traditional energy sectors. Despite extensive literature on forecasting electricity demand, most studies focus on predicting the total demand solely based on the previous-step observations of aggregate demand. With advances in smart-metering technology and the availability of high-resolution consumption data, harnessing fine-resolution smart-meter data in load forecasting has attracted increasing attention. Studies using smart-meter data mainly involve a “bottom-up” approach that develops separate forecast models at sub-aggregate levels and aggregates the forecasts to estimate the total demand. While this approach is conducive to incorporating fine-resolution data for load forecasting, it has several shortcomings that can result in sub-optimal forecasts. However, these shortcomings are hardly acknowledged in the load forecasting literature. This work demonstrates how limitations imposed by such a bottom-up load forecasting approach can lead to misleading results, which could hamper efficient load management within a carbon-neutral grid.
Human infection with antimicrobial-resistant Campylobacter species is an important public health concern due to the potentially increased severity of illness and risk of death. Our objective was to synthesise the knowledge of factors associated with human infections with antimicrobial-resistant strains of Campylobacter. This scoping review followed systematic methods, including a protocol developed a priori. Comprehensive literature searches were developed in consultation with a research librarian and performed in five primary and three grey literature databases. Criteria for inclusion were analytical and English-language publications investigating human infections with an antimicrobial-resistant (macrolides, tetracyclines, fluoroquinolones, and/or quinolones) Campylobacter that reported factors potentially linked with the infection. The primary and secondary screening were completed by two independent reviewers using Distiller SR®. The search identified 8,527 unique articles and included 27 articles in the review. Factors were broadly categorised into animal contact, prior antimicrobial use, participant characteristics, food consumption and handling, travel, underlying health conditions, and water consumption/exposure. Important factors linked to an increased risk of infection with a fluoroquinolone-resistant strain included foreign travel and prior antimicrobial use. Identifying consistent risk factors was challenging due to the heterogeneity of results, inconsistent analysis, and the lack of data in low- and middle-income countries, highlighting the need for future research.