To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most of the existing prediction models for COVID-19 lack validation, are inadequately reported or are at high risk of bias, a reason which has led to discourage their use. Few existing models have the potential to be extensively used by healthcare providers in low-resource settings since many require laboratory and imaging predictors. Therefore, we sought to develop and validate a multivariable prediction model of death in Mexican patients with COVID-19, by using demographic and patient history predictors. We conducted a national retrospective cohort study in two different sets of patients from the Mexican COVID-19 Epidemiologic Surveillance Study. Patients with a positive reverse transcription-polymerase chain reaction for SARS-CoV-2 and complete unduplicated data were eligible. In total, 83 779 patients were included to develop the scoring system through a multivariable Cox regression model; 100 000, to validate the model. Eight predictors (age, sex, diabetes, chronic obstructive pulmonary disease, immunosuppression, hypertension, obesity and chronic kidney disease) were included in the scoring system called PH-Covid19 (range of values: −2 to 25 points). The predictive model has a discrimination of death of 0.8 (95% confidence interval (CI) 0.796–0.804). The PH-Covid19 scoring system was developed and validated in Mexican patients to aid clinicians to stratify patients with COVID-19 at risk of fatal outcomes, allowing for better and efficient use of resources.
This study aimed at estimating the transmissibility of hepatitis C. The data for hepatitis C cases were collected in six districts in Xiamen City, China from 2004 to 2018. A population-mixed susceptible-infectious-chronic-recovered (SICR) model was used to fit the data and the parameters of the model were calculated. The basic reproduction number (R0) and the number of newly transmitted cases by a primary case per month (MNI) were adopted to quantitatively assess the transmissibility of hepatitis C virus (HCV). Eleven curve estimation models were employed to predict the trends of R0 and MNI in the city. The SICR model fits the reported HCV data well (P < 0.01). The median R0 of each district in Xiamen is 0.4059. R0 follows the cubic model curve, the compound curve and the power function curve. The median MNI of each district in Xiamen is 0.0020. MNI follows the cubic model curve, the compound curve and the power function curve. The transmissibility of HCV follows a decreasing trend, which reveals that under the current policy for prevention and control, there would be a high feasibility to eliminate the transmission of HCV in the city.
Toxoplasma gondii (T. gondii) is an important human disease-causing parasite. In the USA, T. gondii infects >10% of the population, accrues economic losses of US$3.6 billion/year, and ranks as the second leading culprit of foodborne illness-related fatalities. We assessed toxoplasmosis risk among the Old Order Amish, a mostly homogenous population with a high prevalence of T. gondii seropositivity, using a questionnaire focusing on food consumption/preparation behaviours and environmental risk factors. Analyses were conducted using multiple logistic regression. Consuming raw meat, rare meat, or unpasteurised cow or goat milk products was associated with increased odds of seropositivity (unadjusted Odds Ratios: 2.192, 1.613, and 1.718 , respectively). In separate models by sex, consuming raw meat, or consuming unpasteurised cow or goat milk products, was associated with increased odds of seropositivity among women; washing hands after touching meat with decreased odds of seropositivity among women (adjusted OR (AOR): 0.462); and cleaning cat litterbox with increased odds of seropositivity among men (AOR: 5.241). This is the first study to assess associations between behavioural and environmental risk factors and T. gondii seropositivity in a US population with high seroprevalence for T. gondii. Our study emphasises the importance of proper food safety behaviours to avoid the risk of infection.
Understanding risk factors for death from Covid-19 is key to providing good quality clinical care. We assessed the presenting characteristics of the ‘first wave’ of patients with Covid-19 at Royal Oldham Hospital, UK and undertook logistic regression modelling to investigate factors associated with death. Of 470 patients admitted, 169 (36%) died. The median age was 71 years (interquartile range 57–82), and 255 (54.3%) were men. The most common comorbidities were hypertension (n = 218, 46.4%), diabetes (n = 143, 30.4%) and chronic neurological disease (n = 123, 26.1%). The most frequent complications were acute kidney injury (AKI) (n = 157, 33.4%) and myocardial injury (n = 21, 4.5%). Forty-three (9.1%) patients required intubation and ventilation, and 39 (8.3%) received non-invasive ventilation. Independent risk factors for death were increasing age (odds ratio (OR) per 10 year increase above 40 years 1.87, 95% confidence interval (CI) 1.57–2.27), hypertension (OR 1.72, 95% CI 1.10–2.70), cancer (OR 2.20, 95% CI 1.27–3.81), platelets <150 × 103/μl (OR 1.93, 95% CI 1.13–3.30), C-reactive protein ≥100 μg/ml (OR 1.68, 95% CI 1.05–2.68), >50% chest radiograph infiltrates (OR 2.09, 95% CI 1.16–3.77) and AKI (OR 2.60, 95% CI 1.64–4.13). There was no independent association between death and gender, ethnicity, deprivation level, fever, SpO2/FiO2, lymphopoenia or other comorbidities. These findings will inform clinical and shared decision making, including use of respiratory support and therapeutic agents.
The paper solves the loss reserving problem using Kalman recursions in linear statespace models. In particular, if one orders claims data from run-off triangles to time series with missing observations, then state space formulation can be applied for projections or interpolations of IBNR (Incurred But Not Reported) reserves. Namely, outputs of the corresponding Kalman recursion algorithms for missing or future observations can be taken as the IBNR projections. In particular, by means of such recursive procedures one can perform effectively simulations in order to estimate numerically the distribution of IBNR claims which may be very useful in terms of setting and/or monitoring of prudency level of loss reserves. Moreover, one can generalize this approach to the multivariate case of several dependent run-off triangles for correlated business lines and the outliers in claims data can be also treated effectively in this way. Results of a numerical study for several sets of claims data (univariate and multivariate ones) are presented.
Entamoeba histolytica is a major cause of dysentery that leads to a high level of morbidity and mortality, especially in developing countries. Calmodulin-like calcium binding protein EhCaBP3 of E. histolytica is directly involved in disease mechanisms with roles in cytoskeleton dynamics and scission during erythrophagocytosis in a calcium dependent fashion. Interestingly, EhCaBP3 is also present in the nucleus of E. histolytica. We have used a transfected cell system to show that EhCaBP3 is capable of calcium dependent nucleocytoplasmic trafficking. Our data confirms and extends recent findings suggesting presence of a calcium dependent nuclear transport pathway in E. histolytica.
The study of desirable structural properties that define a marketable insurance contract has been a recurring theme in insurance economic theory and practice. In this article, we develop probabilistic and structural characterizations for insurance indemnities that are universally marketable in the sense that they appeal to all policyholders whose risk preferences respect the convex order. We begin with the univariate case where a given policyholder faces a single risk, then extend our results to the case where multiple risks possessing a certain dependence structure coexist. The non-decreasing and 1-Lipschitz condition, in various forms, is shown to be intimately related to the notion of universal marketability. As the highlight of this article, we propose a multivariate mixture model which not only accommodates a host of dependence structures commonly encountered in practice but is also flexible enough to house a rich class of marketable indemnity schedules.
We introduce a multivariate class of distributions with support I, a k-orthotope in $[0,\infty)^{k}$, which is dense in the set of all k-dimensional distributions with support I. We call this new class ‘multivariate finite-support phase-type distributions’ (MFSPH). Though we generally define MFSPH distributions on any finite k-orthotope in $[0,\infty)^{k}$, here we mainly deal with MFSPH distributions with support $[0,1)^{k}$. The distribution function of an MFSPH variate is computed by using that of a variate in the MPH$^{*} $ class, the multivariate class of distributions introduced by Kulkarni (1989). The marginal distributions of MFSPH variates are found as FSPH distributions, the class studied by Ramaswami and Viswanath (2014). Some properties, including the mixture property, of MFSPH distributions are established. Estimates of the parameters of a particular class of bivariate finite-support phase-type distributions are found by using the expectation-maximization algorithm. Simulated samples are used to demonstrate how this class could be used as approximations for bivariate finite-support distributions.