To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Matérn hard-core processes are classical examples for point processes obtained by dependent thinning of (marked) Poisson point processes. We present a generalization of the Matérn models which encompasses recent extensions of the original Matérn hard-core processes. It generalizes the underlying point process, the thinning rule, and the marks attached to the original process. Based on our model, we introduce processes with a clear interpretation in the context of max-stable processes. In particular, we prove that one of these processes lies in the max-domain of attraction of a mixed moving maxima process.
Consider a Pólya urn with balls of several colours, where balls are drawn sequentially and each drawn ball is immediately replaced together with a fixed number of balls of the same colour. It is well known that the proportions of balls of the different colours converge in distribution to a Dirichlet distribution. We show that the rate of convergence is $\Theta(1/n)$ in the minimal $L_p$ metric for any $p\in[1,\infty]$, extending a result by Goldstein and Reinert; we further show the same rate for the Lévy distance, while the rate for the Kolmogorov distance depends on the parameters, i.e. on the initial composition of the urn. The method used here differs from the one used by Goldstein and Reinert, and uses direct calculations based on the known exact distributions.
For a spectrally negative self-similar Markov process on $[0,\infty)$ with an a.s. finite overall supremum, we provide, in tractable detail, a kind of conditional Wiener–Hopf factorization at the maximum of the absorption time at zero, the conditioning being on the overall supremum and the jump at the overall supremum. In a companion result the Laplace transform of this absorption time (on the event that the process does not go above a given level) is identified under no other assumptions (such as the process admitting a recurrent extension and/or hitting zero continuously), generalizing some existing results in the literature.
We define a new family of multivariate stochastic processes over a finite time horizon that we call generalised Liouville processes (GLPs). GLPs are Markov processes constructed by splitting Lévy random bridges into non-overlapping subprocesses via time changes. We show that the terminal values and the increments of GLPs have generalised multivariate Liouville distributions, justifying their name. We provide various other properties of GLPs and some examples.
In this paper we address the question of finding the point which maximizes the pth moment of the exit time of planar Brownian motion from a given domain. We present a geometrical method for excluding parts of the domain from consideration which makes use of a coupling argument and the conformal invariance of Brownian motion. In many cases the maximizing point can be localized to a relatively small region. Several illustrative examples are presented.
A set of data with positive values follows a Pareto distribution if the log–log plot of value versus rank is approximately a straight line. A Pareto distribution satisfies Zipf’s law if the log–log plot has a slope of $-1$. Since many types of ranked data follow Zipf’s law, it is considered a form of universality. We propose a mathematical explanation for this phenomenon based on Atlas models and first-order models, systems of strictly positive continuous semimartingales with parameters that depend only on rank. We show that the stationary distribution of an Atlas model will follow Zipf’s law if and only if two natural conditions, conservation and completeness, are satisfied. Since Atlas models and first-order models can be constructed to approximate systems of time-dependent rank-based data, our results can explain the universality of Zipf’s law for such systems. However, ranked data generated by other means may follow non-Zipfian Pareto distributions. Hence, our results explain why Zipf’s law holds for word frequency, firm size, household wealth, and city size, while it does not hold for earthquake magnitude, cumulative book sales, and the intensity of wars, all of which follow non-Zipfian Pareto distributions.
We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.
Block-structured Markov chains model a large variety of queueing problems and have many important applications in various areas. Stability properties have been well investigated for these Markov chains. In this paper we will present transient properties for two specific types of block-structured Markov chains, including M/G/1 type and GI/M/1 type. Necessary and sufficient conditions in terms of system parameters are obtained for geometric transience and algebraic transience. Possible extensions of the results to continuous-time Markov chains are also included.
Determinantal point processes (DPPs) enable the modeling of repulsion: they provide diverse sets of points. The repulsion is encoded in a kernel K that can be seen, in a discrete setting, as a matrix storing the similarity between points. The main exact algorithm to sample DPPs uses the spectral decomposition of K, a computation that becomes costly when dealing with a high number of points. Here we present an alternative exact algorithm to sample in discrete spaces that avoids the eigenvalues and the eigenvectors computation. The method used here is innovative, and numerical experiments show competitive results with respect to the initial algorithm.
In this paper, to model cascading failures, a new stochastic failure model is proposed. In a system subject to cascading failures, after each failure of the component, the remaining component suffers from increased load or stress. This results in shortened residual lifetimes of the remaining components. In this paper, to model this effect, the concept of the usual stochastic order is employed along with the accelerated life test model, and a new general class of stochastic failure models is generated.
We consider a supercritical branching Lévy process on the real line. Under mild moment assumptions on the number of offspring and their displacements, we prove a second-order limit theorem on the empirical mean position.
It is well understood that a supercritical superprocess is equal in law to a discrete Markov branching process whose genealogy is dressed in a Poissonian way with immigration which initiates subcritical superprocesses. The Markov branching process corresponds to the genealogical description of prolific individuals, that is, individuals who produce eternal genealogical lines of descent, and is often referred to as the skeleton or backbone of the original superprocess. The Poissonian dressing along the skeleton may be considered to be the remaining non-prolific genealogical mass in the superprocess. Such skeletal decompositions are equally well understood for continuous-state branching processes (CSBP).
In a previous article [16] we developed an SDE approach to study the skeletal representation of CSBPs, which provided a common framework for the skeletal decompositions of supercritical and (sub)critical CSBPs. It also helped us to understand how the skeleton thins down onto one infinite line of descent when conditioning on survival until larger and larger times, and eventually forever.
Here our main motivation is to show the robustness of the SDE approach by expanding it to the spatial setting of superprocesses. The current article only considers supercritical superprocesses, leaving the subcritical case open.
Drug-induced liver injury (DILI) is a common adverse drug reaction leading to the interruption of tuberculosis (TB) therapy. We aimed to identify whether the hepatitis B virus (HBV) infection would increase the risk of DILI during first-line TB treatment. A meta-analysis of cohort studies searched in PubMed, Web of Science and China National Knowledge Infrastructure was conducted. Effect sizes were reported as risk ratios (RRs) and 95% confidence intervals (CIs) and calculated by R software. Sixteen studies with 3960 TB patients were eligible for analysis. The risk of DILI appeared to be higher in TB patients co-infected with HBV (RR 2.66; 95% CI 2.13–3.32) than those without HBV infection. Moreover, patients with positive hepatitis B e antigen (HBeAg) were more likely to develop DILI (RR 3.42; 95% CI 1.95–5.98) compared to those with negative HBeAg (RR 2.30; 95% CI 1.66–3.18). Co-infection with HBV was not associated with a higher rate of anti-TB DILI in latent TB patients (RR 4.48; 95% CI 0.80–24.99). The effect of HBV infection on aggravating anti-TB DILI was independent of study participants, whether they were newly diagnosed with TB or not. Besides, TB and HBV co-infection patients had a longer duration of recovery from DILI compared to non-co-infected patients (SMD 2.26; 95% CI 1.87–2.66). To conclude, the results demonstrate that HBV infection would increase the risk of DILI during TB therapy, especially in patients with positive HBeAg, and close liver function monitoring is needed for TB and HBV co-infection patients.
Hermite processes are a class of self-similar processes with stationary increments. They often arise in limit theorems under long-range dependence. We derive new representations of Hermite processes with multiple Wiener–Itô integrals, whose integrands involve the local time of intersecting stationary stable regenerative sets. The proof relies on an approximation of regenerative sets and local times based on a scheme of random interval covering.
We construct a multitype constant-size population model allowing for general selective interactions as well as extreme reproductive events. Our multidimensional model aims for the generality of adaptive dynamics and the tractability of population genetics. It generalises the idea of Krone and Neuhauser [39] and González Casanova and Spanò [29], who represented the selection by allowing individuals to sample several potential parents in the previous generation before choosing the ‘strongest’ one, by allowing individuals to use any rule to choose their parent. The type of the newborn can even not be one of the types of the potential parents, which allows modelling mutations. Via a large population limit, we obtain a generalisation of $\Lambda$-Fleming–Viot processes, with a diffusion term and a general frequency-dependent selection, which allows for non-transitive interactions between the different types present in the population. We provide some properties of these processes related to extinction and fixation events, and give conditions for them to be realised as unique strong solutions of multidimensional stochastic differential equations with jumps. Finally, we illustrate the generality of our model with applications to some classical biological interactions. This framework provides a natural bridge between two of the most prominent modelling frameworks of biological evolution: population genetics and eco-evolutionary models.
In the literature of stochastic orders, one rarely finds results characterizing non-comparability of random variables. We prove simple tools implying the non-comparability with respect to the convex transform order. The criteria are used, among other applications, to provide a negative answer for a conjecture about comparability in a much broader scope than its initial statement.
In this paper, we develop a new method for evaluating the reliability polynomial of a hammock network. The method is based on a homogeneous absorbing Markov chain and provides the exact reliability for networks of width less than 5 and arbitrary length. Moreover, it produces a lower bound for the reliability polynomial for networks of width greater than or equal to 5. To investigate how sharp this lower bound is, we compare our method with other approximation methods and it proves to be the most accurate in terms of absolute as well as relative error. Using the fundamental matrix, we also calculate the average time to absorption, which provides the mean length of a network that is expected to work.
This paper deals with pricing formulae for a European call option and an exchange option in the case where underlying asset price processes are represented by stochastic delay differential equations with jumps (hereafter “SDDEJ”). We introduce a new model in which Poisson jumps are added in stochastic delay differential equations to capture behaviors of an underlying asset process more precisely. We derive explicit pricing formulae for the European call option and the exchange option by proving a Lemma on the conditional expectation. Finally, we show that our “SDDEJ” model is meaningful through some numerical experiments and discussions.
There is a set of n bandits and at every stage, two of the bandits are chosen to play a game, with the result of a game being learned. In the “weak regret problem,” we suppose there is a “best” bandit that wins each game it plays with probability at least p > 1/2, with the value of p being unknown. The objective is to choose bandits to maximize the number of times that one of the competitors is the best bandit. In the “strong regret problem”, we suppose that bandit i has unknown value vi, i = 1, …, n, and that i beats j with probability vi/(vi + vj). One version of strong regret is interested in maximizing the number of times that the contest is between the players with the two largest values. Another version supposes that at any stage, rather than choosing two arms to play a game, the decision maker can declare that a particular arm is the best, with the objective of maximizing the number of stages in which the arm with the largest value is declared to be the best. In the weak regret problem, we propose a policy and obtain an analytic bound on the expected number of stages over an infinite time frame that the best arm is not one of the competitors when this policy is employed. In the strong regret problem, we propose a Thompson sampling type algorithm and empirically compare its performance with others in the literature.