To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As a common mineral phase on Earth and Martian regolith, natural rutile was reported as a potential candidate for use as a Fenton catalyst in this study. The influences of Fe and V in various chemical states on the generation of reactive oxygen species (ROSs) and the catalytic activity of rutile were examined. A series of rutile samples with various surface and bulk states of Fe and V were obtained initially by hydrogen annealing of natural rutile at ~773–1173 K. X-ray diffraction, electron paramagnetic resonance spectra, and X-ray photoelectron spectroscopy demonstrated that the atomic fractions of Fe(III) and V(V) decreased sharply with increasing temperature, along with the accumulation of surface Fe(II) and bulk V(III). All as-prepared materials showed enhanced Fenton degradation efficiency on methylene blue (MB) compared with P25-TiO2, and the treated samples exhibited up to 3.5-fold improvement in efficiency at pH 3 compared to the untreated sample. The improved efficiency was attributed mainly to Fenton catalysis involving Fe(II) and V(III). The dissolved Fe2+ played a crucial role in the homogeneous Fenton reaction, while the bound V(III) favored adsorption primarily and may have facilitated heterogeneous Fenton reaction and the regeneration of Fe2+. The pH regulated the reaction mechanism among homogeneous (pH = 3) and heterogeneous (pH = 3.7) Fenton catalysis and physical adsorption (pH = 5, 6). The aim of the present study was to improve the understanding of the potential role of natural rutile with advanced oxidation functions in Earth systems and even on Mars, which also provide an inspiration for screening natural rutile and any other similar, Earth-abundant, low-cost minerals for environmental application.
As a photocatalyst with good prospects, TiO2 has the shortcomings of easy agglomeration and no catalytic performance under visible light. The purpose of the present study was to help solve these problems by employing muscovite as a carrier for N-doped TiO2 in a nanocomposite. The nanocomposites were prepared by a liquid precipitation-grinding method using muscovite as the matrix and urea as the nitrogen source. The crystal structures, chemical bonding, and micromorphology of the nanocomposites were analyzed by X-ray diffraction, infrared absorption spectrometry, and field emission scanning electron microscopy, respectively. Visible and ultraviolet (UV-Vis) light absorption of the nanocomposites was analyzed by solid ultraviolet diffuse reflectance spectroscopy. The photocatalytic effect of the nanocomposites was studied based on the degradation of rhodamine B (RhB) solution. The photocatalytic degradation product of RhB was detected by high-performance liquid chromatography-mass spectrometry, revealing that N-doping inhibits the growth of TiO2 nanoparticles. The photocatalytic performance of N-TiO2/muscovite composite nanomaterials decreased with increasing heat-treatment temperature. N-doped TiO2/muscovite nanocomposites that were heated at 400°C showed the best photocatalytic performance under visible-light illumination with an RhB degradation of 97%.
The number of studies of controlled drug-release systems is growing constantly. Bionanocomposite materials which can be prepared from the combination of biopolymers with inorganic solids such as clay minerals offer interesting alternatives for use as drug-delivery systems. In the present study, new bionanocomposite drug-release systems were prepared from the intercalation of the antibiotic drug ciprofloxacin into montmorillonite using an ion-exchange reaction. In order to prepare more stable systems for oral ciprofloxacin release, this ciprofloxacin-clay intercalation compound was incorporated into i-carrageenan-gelatin biopolymer blend to produce bionanocomposite materials. Bionanocomposites of two distinct i-carrageenan and gelatin mass ratios were conformed as beads through an ionic gelification reaction with Ca2+ ions, and dried by freeze-drying where liquid nitrogen or conventional freezing was adopted in the freezing step. The resulting ciprofloxacin-clay hybrid was characterized by X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, solid state 13C Nuclear Magnetic Resonance (NMR), thermal analysis, and scanning electron microscopy (SEM). The montmorillonite-ciprofloxacin hybrid incorporated into the bionanocomposite beads was evaluated by in vitro release studies which showed a significant difference in the release profiles in the aqueous medium used to simulate the gastrointestinal tract, depending on the blend composition and the freezing method employed in the preparation of the beads. The results point to bionanocomposite systems based on ciprofloxacin-clay hybrids and biopolymers that may be used as devices in the biomedical area.
The conventional method of zeolite synthesis involves an expensive hydrothermal step whereby a mixture of a metakaolinite, sodium hydroxide, and water is preactivated by thermal treatment between 400°C and 1000°C. The objective of the current study was to determine whether Jordanian kaolinite could be converted to zeolite materials without thermal pre-activation. The alkaline hydrothermal transformation of kaolinite into hydroxysodalite (HS) was achieved, then followed by a reaction with citric acid and solid sodium hydroxide to obtain Zeolite A, or by adding solid Na2SiO3 to prepare zeolite X. These materials were tested for their ability to serve as removal agents for Basic Blue 41 (BB-41) dye from artificially contaminated water, at concentrations ranging from 25 to 1000 mg/L. The maximum removal capacities were estimated using the Langmuir model, with a value of 39 mg/g for hydroxysodalite. Zeolite-X achieved the lowest value (19 mg/g). The feasibility of BB-41 removal was deduced from the Freundlich model for the zeolites studied. The reported low-cost method is proposed as an alternative way to reduce the cost of synthesizing zeolite, and the materials were shown to be potential candidates for the removal of BB-41 dye.
This article examines a cohort of post–World War II temperance activists who attempted to legally curtail the circulation of advertisements for liquor, wine, and beer. These activists, who were primarily associated with Protestant church and lay organizations, pressured lawmakers to hold multiple Senate hearings for a series of bills that would prevent any media bearing enticements to purchase alcoholic beverages from moving across state lines. The proposed legislation not only threatened the growth of alcoholic beverage industries, it also took aim at the media makers and advertising firms that endorsed and benefited from the sale of liquor, wine, and beer. This article explores the under-studied archives of the mid-century temperance movement—including the transcripts of their Senate hearings, the minutes of their organizing meetings, the mail they sent to media makers, and their published pamphlets—to illuminate their antagonistic approach to the ballooning world of mass media. I argue that efforts to censure liquor advertising were efforts to discipline and censure the communications industry elites whose products increasingly defined daily life. While many histories describe the Christian actors who took mass media by storm, this article highlights those who situated themselves as a moral check on the perceived excesses of mid-century mass culture.
Beginning in 1867 with the invention of the miniature (or “hobby”) press, young people in the United States began to publish their own amateur newspapers. Within the pages of those publications, adolescents included news articles, editorials, short stories, serialized fiction, poetry, and jokes. The collective result of their literary efforts was referred to as Amateurdom, or “the ’Dom” for short. Included in this teaching supplement are several representative short stories and editorials published by adolescents during the 1870s and 1880s. After reading the primary source material, students might be prompted to address some the questions for discussion included below.
In Christian tradition, Paul is the apostle to the nations. However, his portrayal in the Book of Acts is more nuanced. For a longer period, Paul's ministry is limited to Jews. Only from Acts 13 onwards does Paul slowly emerge as ministering to non-Jews. Yet even then, Paul remains foremost an emissary to diaspora Judaism. In its apology for Paul and his disputed way of including non-Jews into the people of God, Acts emphasises that Paul did so without diminishing the priority of Israel, as a staunch proponent of Jewish monotheism and in a way that took full account of the precarious situation of diaspora Judaism.
The mechanism for the kaolinization of smectite is extremely complex. The purpose of this study was to explore this mechanism by providing more microscopic information about kaolinite-smectite (K-S) intermediate phases. Crystal-chemical changes were investigated and integrated in a model of the transformation mechanism. Eight K-S samples from three localities, derived from volcanic ash beds, were studied using transmission and analytical electron microscopy (TEM, AEM) and high-resolution TEM (HRTEM). The study completes a previous investigation, using several analytical techniques. The samples cover the range of K-S composition available from the previously studied sample set. Analysis by TEM indicated the preservation of particle morphology throughout the process. Most K-S particles had anhedral, smectite-like morphology, and only the most kaolinitic specimen revealed the coexistence of anhedral and euhedral, hexagonal particles. Analytical electron microscopy showed large chemical variations within samples, corresponding to various degrees of smectite kaolinization. Comparison of chemical results (Si/Al) and d060 values (proxy for octahedral composition) with the extent of kaolinization from thermogravimetry (TG) indicates that chemical changes in the octahedral sheet occur mainly when the proportion of kaolinite is 40–70%. The results above are consistent with kaolinization occurring via layer-by-layer transformation through the progressive loss of individual tetrahedral sheets in smectite layers and subsequent chemical changes in the octahedral sheet. Such a mechanism would produce the results observed in this study: (1) most particles preserve their original morphology; (2) significant variation in terms of the extent of transformation of particles within samples, and (3) formation of crystal structures intermediate between those of smectite and kaolinite, with parts of the tetrahedral sheets missing (kaolinite-like patches). Such structures become least stable at kaolinite ∼50%, when the perimeter of the kaolinite-like patches is largest and chemical changes in the octahedral sheet can occur more easily. Kaolinite layers could not be resolved by HRTEM in most cases and showed lattice fringes corresponding to superstructures. A model was established to quantify kaolinite and smectite layers in the HRTEM images with results which matched TG-derived values.
The occurrence of halloysite and/or kaolinite in clay-rich, vein-like zones in saprolites in Hong Kong has provided the opportunity to examine the conditions determining the formation of one kaolin mineral or the other and also the nature of their particles. Clay-rich zones within tuffaceous or granitic saprolites from six different hillside sites have been examined in replicate samples by optical and scanning electron microscopy, X-ray diffraction, and thermal analysis. Kaolin minerals, sometimes together with Mn oxides and Fe oxides/oxyhydroxides, have formed within discontinuities within the altered host rocks. The fabrics of kaolin infills generally indicated several generations of kaolin formation and that shear and deformation have commonly occurred within the infills. The infills were either light or dark in color. Light-colored infills often comprised pure, or nearly pure, halloysite or kaolinite. Dark Mn- and Fe-rich infills all contained kaolinite, while including some halloysite. The very halloysitic, light-colored infills occurred in saprolites in both granite and tuff as long tubular shapes in parallel bunches. The light-colored, very kaolinitic infills occurred in tuff only, in large platy or near-platy shapes within vermiform packets. In dark-colored infills, early kaolin mineral crystallization was limited by impurities from the breakdown of primary minerals leaving dissolved and re-precipitated compounds of Mn and Fe within the infill. Kaolin minerals in infill at all the sites except one are considered to have formed as a result of weathering. The exception comprises white infills in tuff that are composed of extremely small, closely packed particles, suggesting formation by hydrothermal action. Generally, the kaolin minerals have formed by neogenesis out of solution in the discontinuities. Drying, with the formation of Mn and/or Fe oxides/oxyhydroxides, had occurred several times, indicating enhanced drainage. Where drying had occurred, kaolinite had formed. Where indications of drying in infills were absent, halloysite was predominant.
The structure and dynamics of alkylammonium-intercalated smectites were simulated using molecular dynamics employing the clayff-CVFF force field, the reliability of which was firstly validated for these systems. The layering behaviors of alkyl chains confirm the scenarios of the monolayer, transition and bilayer configurations for short, medium-length and long carbon tails, respectively. In the systems without water, the alkylammonium groups are all anchored firmly above the surface six-member rings through H bonds between ammonium hydrogen and surface oxygen, and the alkyl tails are a little more mobile. With water involved, some ammoniums are dragged out of the potential barriers of the six-member rings by water molecules through the strong H bonds between water oxygen and ammonium hydrogen. The intercalated water scarcely affects the basal spacing, alkyl chain layering or alkylammonium dynamics. It is also found that the systems with alkyl chains of 11 to 14 exhibit the greatest density, resulting in the extremely limited mobility of the intercalated species.
The clay fraction of the sedimentary succession beneath the Mahakam Delta (eastern Kalimantan, Indonesia) consists mainly of mixed-layer illite-smectite, with minor amounts of kaolinite and/or dickite, discrete detrital illite and chlorite. On the near-shore anticline, evolution of this mixed-layer material is characterized by a decrease in expandability with depth. The mechanism of conversion of smectite to illite layers depends on the lithology of the host rocks: it evolves along a solid-state transformation in the shales and a dissolution-precipitation in the sandstones.
Illite fundamental particles from two sandstones buried at ∼4000 m in the Tambora field next to the Handil field on the same near-shore anticline yield a mean K-Ar age of 15.7±1.6 Ma (2σ), which is younger than the stratigraphic age but still slightly biased by minute amounts of discrete detrital illite. Recalculated after modeling, which takes into account the occurrence of the discrete detrital illite, this K-Ar age becomes 14.4±0.7 Ma. The K-Ar values of the fundamental particles from associated buried shales are significantly older, which can be explained by a mixture of (1) a precursor material similar to that presently deposited in the delta of the Mahakam River, and (2) authigenic fundamental particles incorporating Ar with a 40Ar/36Ar ratio above atmospheric value during nucleation and growth on the same detrital precursor.
Application of the modeling to the burial evolution of <0.4 µm particles from both the shales and the sandstones of the basin points to a contribution of detrital micaceous material in both lithologies, (1) in the sandstones as a detrital component dissolving progressively and mixed mechanically with the authigenic fundamental particles, and (2) in the shales as a detrital precursor progressively releasing radiogenic 40Ar by burial alteration, and at the same time acting as a support for the fundamental particles for the growth of authigenic fundamental particles that were found to incorporate Ar characterized by an excess of 40Ar.
Six-membered ring heterocyclic compounds are widely present in the Earth's surface environments as biological organic molecules composed of soil organic matter including plant and microbial residues, while little is known about their effect on the dissolution of silicate minerals including amorphous silica. To evaluate the effect of these biological molecules on amorphous silica dissolution, dissolution experiments were carried out by the flow-through method using 0.1 g of amorphous silica and 0.1 mM NaCl electrolyte solutions containing 0.0, 0.1, 1.0, or 10.0 mM of the heterocyclic compounds, piperidine (pK = 11.12), pyridine (pK = 5.25), or pyridazine (pK = 2.33), at a pH of 6, 5, or 4. Additionally, adsorption experiments of the compounds on the amorphous silica surface were performed to confirm the adsorption affinity for the amorphous silica surface. The results demonstrated that these heterocyclic compounds enhance the dissolution rate of amorphous silica in the following order: piperidine > pyridine > pyridazine. When 10.0 mM solutions were used, the heterocyclic compounds enhanced greatly the dissolution rate up to enhancement factors of 6.0 to ~14.8, 5.0 to ~14.0, and 1.0 to ~2.6 through an interaction of piperidine, pyridine, and pyridazine, respectively, in the pH range of approximately 6 to ~ 4. The adsorption experiments indicated that the heterocyclic compounds exhibited significant adsorption affinity for the amorphous silica surface as follows: piperidine > pyridine > pyridazine, which was consistent with the order of their effects on the dissolution enhancement. The geochemical calculation revealed that this order of enhancement was in good agreement with the concentrations of cationic species of heterocyclic compounds at corresponding pH conditions. Consequently, the enhancement of amorphous silica dissolution is likely to be influenced by the electrostatic complexation of the cationic species of the heterocyclic compounds with the negative >SiO– sites on the amorphous silica surface.
Chlorite is one of the most common Fe-bearing minerals and is susceptible to weathering in loess and soils. The conventional method for analyzing chlorite, based on XRD with the Rietveld technique, is quantitative, but very time consuming and expensive. In this paper we develop a new methodology based on diffuse reflectance spectroscopy (DRS) and selective chemical extractions to identify chlorite qualitatively in the Chinese loess sequence and present evidence suggesting that DRS may be used to quantify chlorite content. The spectral signature of chlorite in loess is obscured by Fe oxides, but becomes obvious when they are removed. Changes in the ferrous absorption band near 1140 nm vary consistently with changing chlorite content. Using this spectral feature, DRS can distinguish chlorite contents as small as 1 wt.% in loess sediments. Future possibilities for this method in other soil and sediment types need to be explored.
The naturally occurring layered double hydroxides (LDH, or anionic clays) are of particular interest in environmental geochemistry because of their ability to retain hazardous cations and especially anions. However, incorporation of these minerals into predictive models of water-rock interaction in contaminant environments, including radioactive-waste repositories, is hampered by a lack of thermodynamic and stability data. To fill part of this gap the present authors have derived properties of one of the complex multicomponent solid solutions within the LDH family: the hydrotalcite-pyroaurite series, Mg3(Al1−xFex)(OH)8(CO3)0.5·2.5H2O.
Members of the hydrotalcite-pyroaurite series with fixed MgII/(AlIII+FeIII) = 3 and various FeIII/(FeIII+AlIII) ratios were synthesized by co-precipitation and dissolved in long-term experiments at 23±2°C and pH = 11.40±0.03. The chemical compositions of co-existing solid and aqueous phases were determined by inductively coupled plasma-optical emission spectroscopy, thermogravimetric analysis, and liquid scintillation counting of 55Fe tracers; X-ray diffraction and Raman were used to characterize the solids. Based on good evidence for reversible equilibrium in the experiments, the thermodynamic properties of the solid solution were examined using total-scale Lippmann solubility products, ΣΠT. No significant difference was observed between values of SPT from co-precipitation and from dissolution experiments throughout the whole range of Fe/Al ratios. A simple ideal solid-solution model with similar end-member ΣΠT values (a regular model with 0 < WG < 2 kJ mol −1 sufficient to describe the full range of intermediate mineral compositions. In turn, this yielded the first estimate of the standard Gibbs free energy of the pyroaurite end member, G298,Pyro = −3882.60±2.00 kJ/mol, consistent with G298,Htlco = −4339.85 kJ/mol of the hydrotalcite end member, and with the whole range of solubilities of the mixed phases. The molar volumes of the solid-solution at standard conditions were derived from X-ray data. Finally, Helgeson’s method was used to extend the estimates of standard molar entropy and heat capacity of the end members over the pressure-temperature range 0−70°C and 1–100 bar.
The Tuluanshan Formation of the eastern Coastal Range of Taiwan overlies an andesitic core complex presumed to be the source of hydrothermal fluids responsible for the Si- and Mg-rich mineralization of sepiolite and palygorskite (attapulgite) which are found in veins within fissures and in fracture zones of the volcanic rocks of the region. This study was undertaken in order to understand these relationships better by characterizing sepiolite and palygorskite in this Formation and by examining their occurrence and distribution in the Tungho (TH) and Chunjih (CJ) areas. Samples were analyzed using X-ray diffraction (XRD), thermal analysis, Fourier-transform infrared (FTIR) spectroscopy, and petrographic, scanning (SEM), and transmission (TEM) electron microscopic methods. Sepiolite and palygorskite are blocky and earthy-type materials that display fibrous characteristics when viewed using TEM and SEM and occurred alone or with chalcedony in veins. The fibers of blocky sepiolite are commonly intercalated with smectite but the earthy type of sepiolite and palygorskite observed in this study displayed precipitation from fluid enriched in Si, Al, Mg, and minor Fe and depleted in other ions at an earlier stage of offset of the andesitic veins. Continuation of reverse faulting and high shearing stress caused the precipitation of a significant quantity of interlaminated sepiolite. Sepiolite and palygorskite were formed at an earlier stage of fluid interaction relative to smectite in the Tuluanshan Formation.